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Figure 1: Overview of the ARnnotate workfow. (a) A user creates a bounding contour as the virtual representation of a tar-
get physical object in AR. (b) The user manipulates the bounding contour with a preferred gesture, while ARnnotate keeps 
recording the 3D poses of both the bounding contour and hand obtained by a hand-tracking-capable AR-HMD as the dataset 
labels. (c) ARnnotate replays the record as an interaction clip in AR. The user grabs the physical object using the same gesture 
and manipulates it while ensuring both the hand and object are accurately aligned with the counterparts of the interaction 
clip. ARnnotate captures the user’s frst-person view as the dataset images and temporally pairs them with the corresponding 
labels via back-end processing. (d) The custom dataset created by ARnnotate. 

ABSTRACT 
Vision-based 3D pose estimation has substantial potential in hand-
object interaction applications and requires user-specifed datasets 
to achieve robust performance. We propose ARnnotate, an Aug-
mented Reality (AR) interface enabling end-users to create custom 
data using a hand-tracking-capable AR device. Unlike other dataset 
collection strategies, ARnnotate frst guides a user to manipulate 
a virtual bounding box and records its poses and the user’s hand 
joint positions as the labels. By leveraging the spatial awareness of 
AR, the user manipulates the corresponding physical object while 
following the in-situ AR animation of the bounding box and hand 
model, while ARnnotate captures the user’s frst-person view as the 
images of the dataset. A 12-participant user study was conducted, 
and the results proved the system’s usability in terms of the spatial 
accuracy of the labels, the satisfactory performance of the deep 
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neural networks trained with the data collected by ARnnotate, and 
the users’ subjective feedback. 
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1 INTRODUCTION 
Humans use hands to interact with physical objects and tools in 
everyday life and work. With the advents of hardware devices and 
computational algorithms, Human-Computer Interaction (HCI) re-
searchers have exploited the information behind the hand-object 
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interaction in practical applications such as daily activity moni-

toring [45, 78], interaction-triggered context-aware applications 
[72], engineering task tutoring [17, 32, 48], and tangible Mixed Re-
ality (MR) interfaces [37, 80]. Among these works, the researchers 
have gradually embraced vision-based 3D pose estimation deep 
neural networks [61, 76] as the hand-object interaction perception 
approach owing to their high reliability and scalability. Typically, 
these works prove the HCI-oriented system usability through lab-
oratory experiments while adopting the networks trained with 
bench-marking datasets [6, 19, 24, 82]. 

However, for 3D hand-object interaction detection, a network 
trained with a pre-designated dataset may not cover the diversifed 
real-world scenarios, which signifcantly limits the in-the-feld de-
ployment of the above-mentioned applications. In specifc, while, 
an object pose estimation network easily fails when a user inter-
acts with an object that is visually distinct from its training data 
counterparts (e.g., a plain-color ‘cup’ in a bench-marking dataset 
versus the user’s ‘cup’ in a diferent shape and with decorations); 
on the other hand, a pre-trained network has limited performance 
when a specifc application context is not considered during train-
ing. For example, a hand pose estimation network trained using a 
daily-object dataset may malfunction in industrial scenarios (e.g., 
machine repair and assembly tasks) because the objects involved, 
their background scenes, as well as the object manipulation ways 
can be signifcantly diferent. In light of this, we aim to assist end-
users to collect object-specifed and task-specifed datasets and 
train the networks that can achieve satisfactory performance when 
the same users consume the applications. 

With regards to the 3D hand-object interaction dataset collec-
tion, some works [1, 62] allow users to frst capture images, then 
label the 3D poses of the involved objects using a post-hoc 2D user 
interface following the idea of the 2D labeling tools [59]. Neverthe-
less, they become infeasible when the 3D hand poses are taken into 
consideration. The inevitable hand-object occlusions hamper users 
from labeling the hand joints hidden behind the object on an image. 
Further, the cognitive load for the annotators and the number of 
operations to convert the 3D-domain hand-object interaction as the 
labels on a 2D image are high. Typically, an annotator has to frst 
understand the 3D spatial relationship between a hand skeleton 
and an object, then manipulate the 3D labels using the projected 
2D labels as visual feedback. In addition, it is tedious to mark over 
thousands of images where each image contains more than 20 hand 
joints. On the other hand, Computer Vision (CV) researchers place 
multiple cameras and sensors in laboratory environments to ob-
tain the 3D poses of either hands or objects [6, 19, 40, 82], while 
other works adopt optimization algorithms to synthesize or esti-
mate the 3D poses as labels [24, 27]. Compared with the post-hoc 
interface ideas, these works not only solve the occlusion issue, but 
can also generate both the images and labels concurrently through 
continuous recordings, which signifcantly improve the efciency. 
However, since they mainly serve research purposes, most require 
additional hardware setups, or the target objects are limited to the 
ones included in other bench-marking datasets. Consequently, it is 
impracticable for ordinary users to appropriate these dataset col-
lection systems ad-hoc. Thus, we are highly motivated to explore 
a dataset collection approach that addresses both the hand-object 
occlusion problem and the feasibility of out-of-lab usage. 

The emerging Augmented Reality (AR) technology shows a 
strong potential to fulfll the needs. First, the spatial awareness 
of AR allows for pervasive perception of the digital elements’ 3D 
poses with respect to the AR device. Meanwhile, bare-hand tracking 
has been embedded in the recent of-the-shelf AR Head-Mounted 
Device (AR-HMD) [51], which supports accurate 3D hand skeleton 
detection when no occlusion happens. Together with the image 
capture capability, such a human-centered device has the poten-
tial to support users in continuously and fuently collecting 3D 
object and hand labels and the corresponding images in any local 
environment. More importantly, with the spatial awareness of AR, 
pre-recorded digital contents can be fxed in mid-air as the spatial 
reference of embodied tasks [8, 25, 26, 73]. These works typically 
consist of two sequential steps where users frst record specifc 3D 
hand and body movements, then, the system replays them in AR 
for the users to align their hands and bodies with the digital coun-
terparts to complete the tasks. In our work, we adopt a two-step 
dataset collection process as analogous to these prior workfows 
to solve the hand-object occlusion issue. In specifc, a user frst 
generates the labels of the object and hand by manipulating the 
virtual bounding box, while the bare-hand gesture is being detected 
by the AR-HMD, then records the images when spatially following 
the replaying AR animation of the hand-object interaction. In this 
way, the occlusion is completely decoupled from the labeling stage, 
while the two separately collected parts of the dataset can be paired 
to form the fnal dataset without additional efort. 

We propose ARnnotate, an AR-based system that supports user-
specifed dataset collection for 3D hand and object pose estimation. 
With ARnnotate, a user frst creates a virtual 3D bounding box 
that preserves a physical object’s geometric features by spatially 
referring to the object in AR. Next, the user grabs the bounding 
box in a preferred gesture of holding the physical object, and starts 
to manipulate it in mid-air. At the same time, ARnnotate records 
the 3D poses of the user’s hand and bounding box from the hand-
tracking-capable AR-HMD as the dataset labels. Then, ARnnotate 
displays the record as an AR animation with the moving bounding 
box and hand mesh model, and the user manipulates the physical 
object in the same hand gesture while accurately aligning both the 
hand and object with the AR counterparts. Meanwhile, ARnnotate 
captures the dataset images that are automatically paired with the 
corresponding labels, and completes the dataset collection. 

We highlight our contributions as: (1) An AR-based sequential 
workfow for pervasive and continuous collection of custom hand-
object pose estimation datasets while addressing the hand-occlusion 
issue. (2) An AR interface with front-end visual assistance and back-
end computational processes that supports end-users in creating 
high-quality datasets. (3) A systematic evaluation in terms of the 
spatial accuracy of the collected labels, the performance of the 
networks trained with the datasets, and the qualitative feedback 
from the users. 

2 RELATED WORK 

2.1 Vision-Based Hand-Object Interaction 
Applications in the HCI Area 

Using hands to manipulate objects and tools is one of the most 
dominant ways in human-object interaction in daily living and work 
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[60]. With the advances in hardware and software, HCI researchers 
have been able to digitalize the hand-object interaction into the 
computational domain for an expanding range of applications such 
as monitoring and analyzing daily activities in smart environments 
[42, 45, 78, 79], education [67], and industrial tutoring [2, 14]. 

Among the techniques for hand-object interaction perception, 
using ego-centric-view-based deep learning approaches to extract 
the 3D poses of hands and objects has drawn HCI researchers’ atten-
tion because of the always-on perception of human activities and 
the simple setup for a higher deployment scalability. Ego-Topo [54] 
builds topological maps that represent human interactions using 
frst-person videos. Nagarajan et al. [53] develops a system that 
infers the hotspots of the available object interactions based on ego-
centric videos. Wang et al. [74] and Lee et al. [43] enable robots to 
assist workers by understanding the assembly interactions through 
frst-person-perspective live streams and videos. Vizlens [23] and 
Lee et al. [44] support vision-impaired users to interact with daily 
objects and interfaces. Recently, with the fourishing development 
of AR-HMDs, researchers have developed AR/MR interfaces that 
dynamically respond to interactions with the surrounding objects. 
Kosch and Schmidt [37] augment everyday objects with tangible 
digital interfaces that can react to hand-object interactions. Grip-
marks [80] generates MR interfaces on the handheld object based 
on the detected gesture and object identity. CAPturAR [72] sup-
ports users to build personalized context-aware applications which 
trigger various AR functions by hand-object interactions. Adap-
TutAR [32] adaptively shows diferent AR tutoring elements to 
learners by inferring the learning progress from the detected inter-
actions with the machine interfaces. Recently, ScalAR [58] assists 
domain designers to author semantically adaptive AR contents that 
can dynamically change the spatial placements with respect to the 
physical objects detected in diferent environments. 

However, most works focus on the novelties in terms of the 
HCI-oriented design, and conduct preliminary evaluations of the 
system usability by implementing the 3D pose estimation networks 
trained with limited bench-marking objects and gestures or alter-
nate algorithms that imitate the perception of the 3D hand-object 
interaction. Yet, many promising use cases are still being explored 
at a conceptual level due to the limited performance of the hand 
and object pose estimation networks when being deployed in real-
world environments. Because of the characteristics of deep learning, 
training a network using the dataset collected from the target ap-
plication scenarios instead of using research-oriented datasets with 
pre-designated objects and interaction gestures plays an essential 
role in improving the network performance. Hence, we strive to 
explore a system that supports collecting site-specifc and task-
specifc 3D hand and object pose estimation datasets, and therefore, 
to enable HCI researchers to realize the diversifed use cases using 
the improved hand-object interaction detection networks. 

2.2 3D Hand and Object Pose Estimation 
Dataset Collection 

Multiple approaches have been explored to collect 3D hand and 
object pose datasets. Here, we investigate the practicability of adopt-
ing them to collect user-specifed datasets. 

Some works appropriate the broadly adopted idea of post-hoc 
labeling in 2D dataset creation [59] to the 3D object pose label-
ing domain. Typically, a user frst collects the images of the target 
objects in the local environment, then creates the 3D bounding 
boxes with the assistance of the system, which allows the user to 
freely collect datasets at need. Objectron [1] provides an interface 
that allows users to draw 3D bounding boxes in key frames and 
manually adjusts the bounding boxes’ poses calculated by the sys-
tem for other frames. SUN RGB-D [62] focuses on indoor objects 
standing on the foor/table without elevation change and designs 
a web-based tool for extruding 3D bounding boxes from the 2D 
rectangles drawn by users. However, they become infeasible when 
being implemented in the hand-object interaction dataset collection. 
It is troublesome and even impossible for end-users to label the 3D 
hand and object poses based on the 2D images when hand-object 
mutual occlusions happen. Specifcally, the 3D hand joints hidden 
by the object cannot be labeled, while the separated annotated la-
bels cannot preserve the 3D hand-object relationships across all the 
data samples. In addition, they require tedious workloads to label 
over 20 3D hand joints for over thousands of images. 

On the other hand, researchers set multiple external cameras 
[6, 40, 82] and wearable sensors [19] to concurrently collect the 
images and infer the hand and object poses through computational 
algorithms. These approaches resolve the hand-object occlusion 
issue and achieve high efciency of labeling with the support of 
the additional setups. However, the ubiquity of the hand-object 
interaction in real scenarios requires the datasets to cover diferent 
contexts, and sometimes, within a large environment. Thus, it is 
cumbersome for end-users to set up the equipment. More impor-

tantly, for the users without domain expertise, the quality of the 
collected datasets cannot be guaranteed due to the complicated 
hardware system calibration and confguration. In contrast, HOn-
notate [24] adopts optimization algorithms to estimate the data 
labels using much simpler hardware setups, while ObMan [27] 
synthesizes hand-object interaction labels based on manipulation 
constraints. Yet, the objects considered by these research-oriented 
processes are constrained to the ones included in other existing 
bench-marking datasets [76, 82]. 

Recently, leveraging the emerging AR technology, LabelAR [41] 
develops a spatial interface that supports users to rapidly label 
object poses using an AR-capable device by projecting in-situ placed 
3D bounding boxes onto the corresponding 2D images. While this 
approach addresses both the efciency and scalability with the help 
of AR, it only focuses on the static objects placed on the table, and 
does not touch the hand-object interaction when users need to 
dynamically manipulate objects with hand occlusions involved. 

In light of the pros and cons of these approaches, we aim to 
develop an interface that supports users to complete the custom 
dataset creation in an intuitive and efortless way, while resolving 
the troublesome hand-object occlusion issue. 

2.3 Leveraging Spatial Awareness of AR 
Augmented Reality (AR) shows a strong potential to resolve the 
issues in hand and object pose dataset collection. Thanks to the 3D 
spatial awareness capability provided by the emerging AR technol-
ogy, the relative transform of the virtual contents with respect to 
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the AR device is constantly accessible. Meanwhile, the recent of-
the-shelf AR-HMD [51] has embedded the hand tracking capability 
that keeps providing the 3D hand skeleton for freehand interaction 
with virtual contents [13, 71] where no occlusion exists. With this 
integrated device, a user’s frst-person view, and the 3D spatial 
information of both the virtual contents and the hand skeleton 
can be simultaneously recorded. Thus, we are motivated to enable 
users to create custom 3D hand and object labels and images in 
a pervasive and continuous manner by only wearing a portable 
hand-tracking-capable AR-HMD. 

Furthermore, enabled by the spatial awareness, virtual contents 
can be fxed in mid-air as spatial reference. Typically, researchers 
propose various systems that frst record users’ body and hand 
movements, then replay them in AR for users to utilize as spatial 
reference. LightPaintAR [73] facilitates photographers to precisely 
move a light source in 3D while following a pre-recorded AR trace 
for light-painting photography. In body movement tutoring sys-
tems, a user can move with an animated virtual body that is overlaid 
on the user’s frst-person view in AR [25, 26, 29]. By following a 
moving full-body AR avatar that is pre-recorded by an expert, a 
learner can rapidly master embodied machine operations [8]. In 
remote collaboration, a local user is able to complete hand-object 
interaction tasks by aligning both hands with the point cloud of a 
remote helper’s hands [18]. GhostAR [9] enables designers to au-
thor human-robot-collaboration tasks by referring to the AR avatar 
externalized from the pre-recorded human action. 

By using AR as spatial reference, users’ dynamic activities in 
the virtual and physical domain can be temporally split but spa-
tially aligned, which is highly similar to the hand-object interaction 
dataest collection process where the images are captured when 
users physically interact with the object and the labels are spatially 
annotated onto the images in the virtual domain. Meanwhile, these 
works have proved that users are able to perform accurate 3D move-

ments following the in-situ animated digital contents with the help 
of the depth perception of AR. Therefore, by imitating the work-
fows mentioned above, we propose to allow users to frst record 
the labels of hands and objects by manipulating virtual bounding 
boxes using the hand-tracking-capable AR-HMD and save them 
as AR animations. Then, the users perform the physical-domain 
hand-object interaction while following the in-situ AR animations 
so that the users’ frst-person view can be captured as the dataset 
images. In this way, not only the occlusion issue is intrinsically 
resolved since the labeling process purely happens in the virtual 
domain, but the pairing of the images and labels is also fuently 
accomplished when the users spatio-temporally align the physical 
objects with the in-situ AR animations. 

3 ARNNOTATE SYSTEM DESIGN 
In this section, we demonstrate the system design of ARnnotate. 
First, we provide an overview of the system workfow using a spe-
cifc task as an example. Next, we elaborate on the system features 
that assist end-users to succeed in the collection of hand-object 
interaction datasets while addressing the considerations discussed 
in the previous sections. 

3.1 System Walk-through 
The overall workfow of ARnnotate is illustrated in Figure 2. As 
addressed in the previous sections, instead of collecting the images 
and labels of a dataset concurrently [19, 24] or in a post-hoc labeling 
manner [1, 22, 62], ARnnotate adopts a sequential process of frst 
creating the digital hand and object pose labels, then capturing the 
images of the physical-domain hand-object interaction. The two 
parts are temporally paired when users spatially align the object 
and hand with the animated labels in AR. In the following sub-
sections, we will sequentially cover in detail every step illustrated 
in the workfow. 

Bounding Contour 
Creation

Label Recording Image Recording

Enough Data?
Yes

No

Image-Label 
Pair Shift

Interaction Clip 
Smoothing

Interaction ClipBounding Contour

Start

End

Dataset
Hand label 
correction

Figure 2: ARnnotate system workfow. 

Here, we walk-through the workfow of ARnnotate using the 
scenario shown in Figure 1 where an end-user wants to collect data 
of interacting with a toy car. The user frst creates a bounding 
contour that holds the same geometric features of the physical toy 
car by spatially aligning multiple virtual primitives with proper 
sizes with the corresponding elements of the toy car in AR (Figure 
1a). Next, the user starts to collect the dataset. ARnnotate separates 
the dataset collection into two sequential steps: label recording 
and image recording. To start the label recording step, the user 
grabs the bounding contour in the same way as grabbing the physical 
toy car, and starts to manipulate the bounding contour in AR (Figure 
1b). With the spatial awareness and the hand-tracking capability 
of the AR-HMD, ARnnotate keeps recording the 3D positions and 
orientations of the bounding contour together with the 3D positions 
of the hand joints with respect to the AR-HMD, and saves them 
as an interaction clip. Then, the user enters the image recording 
step. ARnnotate replays the interaction clip as an AR animation 
using the same bounding contour and a virtual hand model. The 
user now grabs the physical car in the same way as in the label 
recording by overlaying both the bounding contour and the virtual 
hand model with the corresponding physical elements with the 
help of the depth occlusion provided by the AR-HMD (Figure 1c). 
During the image recording step, the user ensures the toy car is 
accurately aligned with the animated bounding contour throughout 
the entire interaction clip with the help of visual reference and 
depth occlusion enabled by the AR-HMD. ARnnotate captures the 
user’s frst-person view from the AR-HMD as the dataset’s images. 
Guided by ARnnotate, the user repeats the two steps for multiple 
trials until enough data have been collected (Figure 1d). In the 
following sections, we describe the system design of ARnnotate. 

3.2 Bounding Contour Creation 
In 3D object pose estimation, two major considerations afect the 
quality of the labeled data, and therefore, afect the performance 
of the network: (1) The orientation of the 3D bounding box should 
precisely represent the orientation of the physical object, and this 
orientation alignment should be consistent for all the potential 
poses of the physical object. For instance, from the perspective 
shown in Figure 1a, the ‘upward’ direction of the bounding box 
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should point upwards, the ‘forward’ direction of the bounding box  Label Recording 
faces towards the head of the car, and the ‘right’ direction is per-
pendicular to both the other two. (2) The physical object should be 
enclosed by the bounding box with the smallest volume given the 
orientation mentioned before. Besides these two concerns, specif-
cally for ARnnotate, during the image recording (Figure 1c), users 
need to manipulate the physical object to align with the animated 
virtual bounding box, which requires instant recognition of the 
bounding box’s spatial orientation. Thus, instead of using a simple 
cuboid as the bounding box, ARnnotate supports users to create a 
bounding contour that extensively preserves the geometric shape 
and characteristic features of the physical objects. Note that the 
main goal is not to replicate every detail of an object. Instead, users 
are expected to create the outline and some characteristic features 
of the object so that during the image recording, users are able to 
rapidly align the object’s 6DOF with the replaying interaction clip. 

Researchers have proposed to accurately create AR contents 
using physical objects and surfaces as spatial reference [5, 20, 33, 
39, 41]. Following these works, we provide two methods to create 
a bounding contour : primitive creation and free-sketch creation. 
For objects with non-symmetric regular geometric features (a milk 
box or a cooking pan), it is feasible to segment such an object 
into a combination of diferent standard primitives. ARnnotate 
provides these primitives and allows users to move/rotate/scale 
them to encase the corresponding parts of the physical objects 
(Figure 3a). For instance, a soft drink bottle can be represented by a 
cuboid as the main body and a small cylinder to indicate the cap 
(Figure 3a-1). For objects such as cups and spray bottles, they usually 
have complicated curves that are difcult to be represented by the 
primitives. We allow users to create 3D sketches in AR by directly 
referring to the shape of the physical objects as a complementary 
method such as the handle of a cup in Figure 3b-1. Meanwhile, users 
can leverage this method to create identifable markers on regular-
shaped objects such as sketching the logo of a wipe bottle and a 
paper box to indicate its orientation (Figure 3b-3 and b-4). Users can 
freely utilize the combination of these two methods to customize 
their own bounding contours. Eventually, ARnnotate automatically 
converts them into the general bounding box broadly accepted by 
the CV area. The user operation details of the bounding contour 
creation will be explained in Section 3.5. 

(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

Figure 3: Example bounding contours created by ARnnotate. 
(a-1 to a-4) Bounding contours created by the primitive cre-
ation method. (b-1 to b-4) Bounding contours created by both 
the primitive creation and free-sketch creation methods. 

3.3
ARnnotate manages to allow a user to create the labels before 
collecting the images in order to eliminate the hand-object occlusion 
issue. During the label recording, our system saves the labels as 
an interaction clip, an AR animation that includes the spatial 
movements of the bounding contour and the specifc hand gesture 
to grab the object. Technically, an interaction clip is a time series 
with the 3D positions/rotations of the bounding contour, and the 
3D positions of the 21 hand joints broadly adopted in hand datasets 
[81, 82]. Since the user needs to refer to these records as spatial 
reference in the image recording step, ARnnotate provides several 
textual and visual hints to guide the user to create interaction clips 
that can be easily and precisely followed later. 

3.3.1 Grabbing the bounding contour. In most single-hand-object 
interaction scenarios, a user grabs a physical object using an un-
changed gesture throughout the entire manipulation (e.g., holding 
the handle of a cup using a ‘fst’ gesture or holding a fashlight 
using a ‘semi-fst’ gesture). In order to create the labels of the hand 
poses during the label recording step, we aim to allow users to grab 
the bounding contour in a same way analogous to grabbing the cor-
responding physical object. As addressed in the previous section, 
the bounding contour duplicates the characteristic features of the 
physical object. Therefore, using ARnnotate, a user frst grabs the 
physical object in a preferred way, and aligns it with the bounding 
contour in mid-air. Then, the user releases the physical object while 
keeping the gesture unchanged. ARnnotate rigidly attaches the 
bounding contour with a virtual anchor where its pose is calculated 
as the average position and rotation of the user’s fve fngertips. 
Further, the ultimate goal of collecting the dataset is to train the 
networks used by the same user in daily living and work. So, ARn-
notate suggests that the user performs the gestures that will be 
commonly used to interact with the current object, while the user 
still has the freedom to determine what gestures to perform. The 
corresponding guidance and suggestion are provided in clearly 
listed sequential bullet points via the user operational interface 
described in Section 3.5. 

Moreover, unlike holding a physical object, it is difcult for the 
user to keep the gesture unchanged when grabbing a virtual object 
without haptic feedback. We introduce the gesture indicators that 
are attached to the user’s grabbing hand’s fve fngertips to assist 
the user to keep the hand gesture unchanged (Figure 4a). During 
recording, each gesture indicator turns from green to yellow or 
red to warn the user if the fnger moves too much from the initial 
position, while the thresholds for the two colors are empirically set 
to 1cm and 1.5cm. Moreover, ARnnotate marks the frame as invalid 
when more than two gesture indicators turn red, and deletes the 
corresponding data during the data post-processing. 

3.3.2 Label recording by manipulating the bounding contour. Prior 
works [49, 50] discuss the benefts of DoF separation when manip-

ulating a virtual object in 3D, and prove that the DoF separation 
achieves precise manipulation outcome. In order to ensure users 
can accurately follow the recorded interaction clip in the image 
recording, we encourage users to interact with the bounding contour 
in two manners, namely, translation-dominant manipulation and 
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rotation-dominant manipulation. For the translation-dominant ma-

nipulation, users move the bounding contour in any trajectory they 
prefer without rotating their wrists, while for the rotation-dominant 
manipulation, users majorly rotate the bounding contour without 
moving it in space. The textual guidance is provided through the 
text panel illustrated in the user interface in Section 3.5. 

Meanwhile, an efective neural network requires the dataset to be 
diverse and contain an adequate number of data [31]. To guarantee 
the robustness of the training network, we introduce two indicators 
guiding users to achieve the corresponding requirements, namely, 
the orientation indicator and progress indicator . Users can use 
the orientation indicator to check whether they have manipulated 
the objects from diferent viewpoints, which ensures that diferent 
poses of the current object are included in the dataset. The progress 
indicator informs users how many labels have been created so 
far and how many labels are left to reach a recommended dataset 
size. In ARnnotate, we attach the orientation indicator onto the 
bounding contour, which is a spherical surface with numerous hexa-
tiles (Figure 4b). After the user grabs the bounding contour, we 
cast a ray from the AR-HMD along the direction between the AR-
HMD and the bounding contour center. When the label recording 
starts, we visually hide the tiles that lie around the intersection 
point between the raycast and the orientation indicator. With this 
indicator, users are encouraged to record multiple interaction clips 
in as many ways as they may grab the object in real application 
scenarios. For the progress indicator, it is a progress bar representing 
the percentage of the collected labels out of the target number of 
the dataset (Figure 4c). Users are expected to achieve full progress 
for the dataset collection. Note that since our work is a proof-of-
concept and the network is trained for a user’s customized usage, 
we do not need a large-scale dataset and the target data size is 
empirically set according to the preliminary training performance 
assessment mentioned in Section 4. 

(a) (b) (c)

Figure 4: The visual indicators for the label recording step. (a) 
The gesture indicators are attached on the fve fngertips of 
the hand that is grabbing the bounding contour to help keep 
the gesture unchanged during the recording. (b) The orienta-
tion indicator is bound with the bounding contour where the 
hexa tiles turn transparent if the corresponding orientation 
has been covered in the interaction clips. (c) The progress in-
dicator foating above the bounding contour indicates the 
overall dataset collection progress. 

3.4 Image Recording 
During the label recording, each interaction clip is recorded as a 
list of pose frames [f1, f2, ..., fn ], where each frame contains the 
timestamp (fi .t), the positions (fi .pos) and rotations (fi .rot ) of the 
bounding contour, the set of the 21 hand joint positions (fi .h), and 
the current image (fi .д). At this moment, fi .д is empty since no 

image has been recorded. Before and after the image recording, we 
adopt three algorithms that assist users to record the images f .д 
that can be accurately paired with the corresponding labels. 

3.4.1 Interaction clip smoothing. When recording the labels, users 
may suddenly start/stop a movement or rapidly change the transla-
tion/rotation direction, which causes signifcant velocity changes. 
According to the prior arts [16, 75], such cases will increase the spa-
tial inaccuracy of 3D manipulation. Following their guidance, before 
starting the image recording step, we pre-process the replaying in-
teraction clip by clamping the linear and angular accelerations of the 
bounding contour. We adopt the Algorithm 1 for the pre-processing. 
We frst batch the recorded frames [f1, f2, ..., fn ] as [b1, ..., bn/k ], 
where each batch bi contains k consecutive frames, denoted as 
[fi1, fi2, ..., fik ]. For each batch bi , we frst calculate the average 
linear (bi .v) and angular (bi .ω) velocities, then calculate the linear 
and angular accelerations as: bi .a = (bi .v−bi−1.v)/(fi0.t − f(i−1)0.t), 
and bi .α = (bi .ω − bi−1.ω)/(fi0.t − f(i−1)0.t), where i = 1, ..., n/k . 
When an acceleration value bi .acce (acce ∈ {a, α }) exceeds the 
corresponding threshold, accemax , we increase the timestamps of 
all the frames within and after bi by a calculated value so that 
the new acceleration of the current batch is equal to the corre-
sponding threshold (Algorithm 1). We empirically set the thresholds 
∆tmax = 0.5 s , amax = 0.1 m/s2,α = 1 rad/s2 

for the added time 
duration, linear acceleration, and angular acceleration respectively. 

Algorithm 1 Pre-process an Interaction Clip 

1: procedure PreprocessInteractionClip([b1, b2, · · · , bN ]) 
2: for i ← 2, N do 
3: if bi .acce > accemax then 
4: ▷ Extend the time duration of the current batch 

bi .acce(fik .t −fi 1 .t )
5: tend ← siдn(bi .acce)accemax 

6: ∆t ← tend − fik .t 
7: if ∆t > ∆tmax then 
8: ∆t ← ∆tmax 
9: end if 
10: for j ← 2, k do 
11: fik .t ← fi1.t + (j − 1) ∆t k−1 
12: end for 
13: ▷ Postpone the timestamps of all the later frames 
14: for m ← i + 1, N do 
15: for j ← 1, k do 
16: fmj .t ← fmj .t + ∆t 
17: end for 
18: end for 
19: end if 
20: end for 
21: end procedure 

Now, a user can start the image recording using the processed 
interaction clip. ARnnotate further allows the user to adjust the 
average replaying speed to a proper value so that the user feels 
confdent to follow the interaction clip accurately. 

3.4.2 Image-label pair shif. After the image recording step, the 
recorded image-label pairs may involve temporal mis-alignments 
due to the latency between a user’s movement and the animated 
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interaction clip. Following [16, 75], we utilize the velocity infor-
mation calculated before (bi .v and bi .ω), together with the replay 
speed ratio set by the user, rдlobal ∈ (0.5, 1.5) to proportionally 
shift the label afterwards if the replaying linear/angular velocity 
(bi .vel ∗ rдlobal ) exceeds the corresponding velocity threshold, 
velmax (vel ∈ {v, ω}) (line 4-12 in Algorithm 1). Specifcally, we 
add the time ofset δt = (bi .vel ∗ rдlobal − velmax ) ∗ ratio to the 
timestamps of the labels (line 13-17 in Algorithm 1), where we 
adopted the same thresholds of ωmax and vmax as suggested in 
[16, 75], and the ratio value is set to 20. The hand joint set fi .h 
keeps bound with the object poses in this step. 

3.4.3 Hand label correction. Last but not least, in some cases where 
a user’s hand is mostly perpendicular to the AR-HMD, tiny spatial 
errors of the hand joint positions may cause the labels completely 
detached from the hand. To avoid such scenarios in the fnal dataset, 
leveraging the depth perception supported by the AR-HMD, we 
record the depth images for each frame, and segment the images 
into background and foreground using [11]. After the image-label 
pair shift, ARnnotate checks whether all the 21 labeled hand joints 
fall into the foreground of each image (line 3-6 in Algorithm 2). 
When there is at least one joint lying in the background, ARnnotate 
searches around the neighboring m frames in case there is a better 
match between the current image and a nearby hand label (line 7-14 
in Algorithm 2). We denote the number of joints of the p-th hand 
label (fp .h) falling in the foreground of the q-th image (fq .д) as 
Numqp. When searching for the alternative label for the q-th frame, 
ARnnotate frst selects the labels with the maximum of Numqj 

m
(j ∈ {q − m 

2 , . . . , q + 
2 }), i.e., the labels where most joints fall 

into the current frame’s foreground, then matches the temporally 
nearest label with the current image (line 19-21 in Algorithm 2). 
The matching algorithm is shown in Algorithm 2 and the m value 
is empirically set to 8. Additionally, ARnnotate deletes the data 
where more than 3 joints lie in the background and the data with 
the bounding contour or hand out of view. 

3.5 ARnnotate Operational Interface 
We describe the AR interface that supports all the needed opera-
tions. A bounding contour creation menu attached on a user’s left 
hand is used to declare the name of the target physical object via 
the ‘Object Name’ button, and to create a bounding contour using 
the two methods described before via the ‘Create’ button (Figure 
5a-1). A ‘coordinate icon’ (Figure 5a-1) fxed in mid-air indicates 
the initial orientation of the created bounding contour. The user 
can freely switch the method by pressing the corresponding button. 
For the free-sketch method, a brush sphere is attached on the user’s 
right index fngertip. When the user performs a pinch gesture on 
the left hand, the system starts to draw 3D strokes based on the 
brush tip’s position. The user can directly touch the physical object 
to get haptic feedback to improve the drawing accuracy (Figure 
5a-2). For the primitive method, the user translates/rotates/scales it 
using the bare-hand interaction supported by our system (Figure 
5a-3). The user can delete a stoke or a primitive by frst pressing 
the ‘Mode’ button (Figure 5a-1), then simply touching the element 
to be deleted using the right index fnger. Meanwhile, a text panel 
is also provided for showing the necessary textual guidance (Figure 

Algorithm 2 Image and Hand Label Matching 

1: procedure GetNewLabelArray([f1, f2, ..., fN ]) 
2: Labels ← array[]
3: ▷ Checks if all labeled joints fall into the foreground of the 

image 
m

4: for i ← 1 + 
2 , N − m 

2 do 
5: maxIdx ← i 
6: if Numii < 21 then 
7: ▷ Find a better matched label for the current image 

m
8: for j ← i − m 

2 , i + 
2 do 

9: if Numi, j > Numi,max Idx then 
10: maxIdx ← j 
11: end if 
12: if Numi, j = Numi,max Idx and | fi .t − fj .t | < 

| fi .t − fmax Idx .t | then 
13: maxIdx ← j 
14: end if 
15: end for 
16: end if 
17: add fmax Idx .h to Labels 
18: end for 

m
19: for i ← 1 + 

2 , N − m 
2 do 

20: fi .h ← Labels[i]
21: end for 
22: end procedure 

5a-1). A label recording menu will appear above the bounding con-
tour created by the user, where the user can ‘Grab’ the bounding 
contour, ‘Record’ interaction clips, toggle on/of the orientation indi-
cator and the progress indicator, and ‘Delete’ the bounding contour 
respectively (Figure 5b). For each recorded interaction clip, an im-
age recording menu will be instantiated above the bounding contour 
(Figure 5c). The user can press the ‘Animation’ button to toggle 
on/of the corresponding interaction clip, adjust the speed of the 
clip using the slider, and start the image recording via the ‘Record’ 
button. ARnnotate will show a 5-second count-down, then hide all 
the unnecessary UIs for the user to concentrate on the object ma-

nipulation. After the current interaction clip is played once, all the 
UIs reappear to allow the user to start another recording session of 
the current bounding contour, or start over with a diferent physical 
object. The user can ‘Delete’ the interaction clip if needed. 

4 IMPLEMENTATION 
We build the hand-tracking-capable AR-HMD by combining an Ocu-
lus Quest 2 [56] with a front-facing stereo camera (ZED Dual AMP 
camera [63]). The system is developed using Unity3D (2020.3.18f1) 
and the freehand interaction for UI operation is supported by Mi-

crosoft Mixed Reality Toolkit (MRTK)
1
. During the image recording, 

images are saved at 1280 × 720 pixels on a connected PC at 15 
frames per second. Object annotations are saved following the Ob-
jectron dataset format [1] and hand annotations are saved following 
the Panoptic Dataset format [36]. We select two networks for the 
evaluation of the datasets collected by our system. For the 3D ob-
ject pose detection, we adopt the CenterPose [47] network which 

1
https://github.com/microsoft/MixedRealityToolkit-Unity 

https://1https://github.com/microsoft/MixedRealityToolkit-Unity
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(a-2)

(a-1) (a-3) (c)

(b)

Figure 5: The AR interface of ARnnotate. (a-1) The bounding 
contour creation menu. Bottom-left: the ‘coordinate icon’ in-
dicating the orientation of the bounding contour. (a-2) Users 
create 3D sketches using the brush tip attached on the right 
index fngertip while directly touching the physical surfaces. 
(a-3) Users manipulate a primitive using freehand interac-
tion provided by ARnnotate to align it with the correspond-
ing part on the physical object. (b) The label recording menu 
displayed above the bounding contour. (c) The image record-
ing menu will be instantiated above the label recording menu 
after a new interaction clip is recorded. 

was originally trained on the Objectron dataset. For the hand pose 
estimation, we frst implement the OpenPose [10] approach, a ro-
bust hand pose estimation network against occlusions, to predict 
the 2D hand joint positions on the RGB image, then infer the 3D 
joint positions from 2D positions following [57]. Our work targets 
user-specifed application scenarios rather than common datasets. 
To determine a proper data size that can achieve a decent training 
result, we trained the target object and hand pose estimation mod-

els with diferent data sizes (1k, 1.5k, ..., 5k), and chose the data 
size to be 2.5k for each object category since it is the minimum 
data size that reaches a result comparable with the bench-marking 
datasets [1, 82]. During training, data in each object category was 
shufed and 80% of images were used for training while 20% of 
images were used for testing. To avoid the overftting issue, we 
applied cross-validation method for each user’s collected dataset. It 
took 3 hours for object pose estimation training per category per 
user and 4.5 hours for each user’s hand pose estimation on a PC 
(Intel Core i7-9700k 3.6 GHz, 32 GB RAM, NVIDIA RTX 2080 GPU). 

5 SYSTEM EVALUATION 
We conducted a two-session user study to evaluate the three main 
considerations addressed in the above sections respectively: (1) The 
spatial accuracy and quality of the dataset created by our system, 
(2) whether we can train object and hand pose estimation neural 
networks with decent performance using the datasets generated 
by our system, and (3) the overall usability of the entire system. 

12 users (8 males and 4 females, aging from 21 to 29) were re-
cruited on campus. None of them had used our system before the 
user study. 3 users had machine learning and CV experience. Yet, 
this was not a comparison-based user study since our system tar-
gets any end-users and supports them to collect the dataset for their 
own usage. The entire study took 1.5 hours, and each user was paid 
with a $20 e-gift card. After a user came, we frst introduced the 
background of our system and let the user get familiar with the 

entire system workfow, the system UIs, and the depth occlusion vi-
sual efect supported by the AR-HMD. During the user study, there 
was no additional guidance provided by the researchers besides 
the initial workfow introduction. For the guidance and suggestion 
described in Section 3.3, the users referred to the texts shown on 
the text panel (Figure 5 (a-1)) to complete each collection trial. After 
the two sessions, each user completed a 5-scale Likert-type ques-
tionnaire together with a standard System Usability Scale (SUS) 
questionnaire. Lastly, we took a conversation-type interview with 
the users to get their subjective feedback of the system. 

5.1 Quantitative Evaluation of the Dataset 
Accuracy 

Unlike the concurrent and post-hoc processes where the labeling 
inaccuracy may come from the hardware, algorithm, and annota-
tor’s expertise, the potential labeling error of ARnnotate is mainly 
attributed to the mis-alignments in the space-time domain. Thus, 
in this study session, we evaluate whether the labels generated 
for the corresponding images are accurate after all the pre- and 
post-processing approaches discussed in Section 3. 

5.1.1 Procedure. Since a user is holding the physical object during 
the image recording step, the AR-HMD cannot provide the ground 
truth data. Meanwhile, it is impossible for the researchers to label 
the data post-hoc since no such interface exists as addressed in 
the Related Work section. Therefore, we adopt two external re-
sources to obtain the ground truths of both the object poses and 
hand joint positions in real-time. This session was completed in the 
space shown in Figure 6a. We attached an up-facing Leap Motion 
Controller

2 
to provide the ground truths of the hand via its hand 

tracking module
3
, and mounted a downward-facing webcam for 

the 3D pose detection enabled by Vuforia Image Targets4 
while 

an image target was attached on a 10cm cube. Before the session 
started, the Leap Motion Controller and the webcam were calibrated 
into the AR-HMD’s coordinate system. Each user was required to 
use our system to collect datasets of the cube in 6 trials, where each 
trial lasts for 20 seconds. To address the DoF separation concern dis-
cussed in Section 3, the frst three trials required the users to move 
the cube in a translation-dominant way in three diferent directions, 
while the last three asked the users to rotate the cube in mid-air. 
Meanwhile, we recorded the 3D pose of the cube and the hand 
skeleton detected from the two devices for the real ground truths. 
The users were asked to hold the cube mostly from the bottom so 
that the Leap Motion Controller could detect the hand skeleton. But 
the users had the freedom to choose their own gestures. Figure 6b 
illustrates some of the gestures performed by the users. Following 
the prior works in the object manipulation area [16, 38, 66], we 
calculated the translation and rotation error between the ground 
truths and the labels generated by ARnnotate. 

5.1.2 Result and Discussion. After the post-processing of ARn-
notate, we collected 15130 and 15016 valid image-label-pair for 
the translation-dominant and rotation-dominant trials respectively. 
The spatial accuracy of the labels generated by ARnnotate is shown 

2
https://www.ultraleap.com/product/leap-motion-controller 

3
https://developer.leapmotion.com 

4
https://library.vuforia.com/features/images/image-targets.html 

https://4https://library.vuforia.com/features/images/image-targets.html
https://3https://developer.leapmotion.com
https://2https://www.ultraleap.com/product/leap-motion-controller
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in Figure 6c. Regarding the object pose accuracy, the average trans-
lation errors were 0.94cm (SD=0.068) and 0.44cm (SD=0.021) for 
the translation-dominant and rotation-dominant trials respectively, 
with an overall average error to be 0.69cm (SD=0.033). Meanwhile, 
the average rotation errors were 1.70◦ 

(0.087) and 3.77◦ 
(SD=0.343) 

for the translation-dominant and rotation-dominant trials respec-
tively, with an overall error to be 2.73◦ 

(SD=0.18). Given that the 
cube size is 10cm, following the results discussed in the prior works 
[16, 38, 66], ARnnotate could reach exceedingly accurate results in 
both the translation and rotation object manipulation. Typically, 
the remarkable performance of the translation accuracy in the 
rotation-dominant trails and the rotational accuracy in translation 
ones further proved the efectiveness of decoupling translation and 
rotation during virtual object manipulation discussed in Section 
3.3. Regarding the hand, we followed the broadly used criterion to 
evaluate the hand joint accuracy [57]. We calculated the Mean Per 
Joint Position Error (MPJPE) of the 21 hand joints’ 3D positions, and 
got 0.77cm (SD=0.026) and 0.92cm (SD=0.043) for the translation 
and rotation trials (overall error was 0.85cm with SD=0.011). The 
quantitative results demonstrated that the processing of the inter-
action clips could support users in accurately aligning the physical 
objects and hands with the moving virtual counterparts. Yet, as a 
dataset collection work, we still need to evaluate the quality of the 
dataset by investigating the training results. 
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Figure 6: (a) The hardware setup of the dataset accuracy 
study. (b) Example gestures the users performed to hold the 
cube. (c) The results of the study. 

5.2 Evaluation of the Dataset via Neural 
Network Training 

In this session, we used the datasets generated by ARnnotate to 
train two broadly adopted networks in the hand and object pose 
estimation areas to assess the feasibility of our system. 

5.2.1 Procedure. We asked the users to collect the datasets for 
4 hand-held objects: a soft drink bottle, a cereal box, a toy car, 
and a fashlight (Figure 7a), where the bottle and the cereal box 
were included in the Objectron dataset [1], and the other two were 
chosen considering the varied shapes and aspect ratios. The users 
were encouraged to manipulate the objects with any gestures they 
preferred. The session fnished when the number of the collected 
images reached the fore-mentioned empirically set target number, 
which was indicated by the progress indicator. We recorded the total 
completion time for each user. 

For each user and each object, we trained the two networks 
mentioned in Section 4 for detecting the 3D poses of the hand 
and object. And we adopted the same network training details. 
Following the general process in the 3D object pose estimation area 

[1, 47], we calculated Average Precision (AP) of the 3D Intersection 
over Union (IoU) with a threshold of 0.5, 2D pixel projection error, 
AP of azimuth with a threshold of 15◦, and AP of elevation with a 
threshold of 10◦. Specifcally, the 3D IoU computes the intersection-
of-volume of the predicted 3D bounding box and the ground truth. 
Given the estimated and ground truth poses of a 3D bounding 
box, the 2D pixel projection error measures the mean normalized 
distance between the projections of the keypoints of the bounding 
box. For the hand, we report the Mean Per Joint Position Error 
(MPJPE) and the Percentage of Correct Points (PCK) following 
[52, 61]. The PCK refers to the probability that a joint is within a 
distance threshold of its ground truth location [77]. 

(a) (b)

Figure 7: (a) The four objects used for the dataset collection: 
A bottle, a cereal box, a toy car, and a fashlight. The frst 
two were included in the Objectron [1] dataset. (b) Example 
bounding contours created by the users. 

5.2.2 Result and Discussion. All the participants successfully com-

pleted the dataset collection task using ARnnotate. The average 
completion time to collect 2.5k images for each user and each ob-
ject category was 12.37 minutes (SD = 3.25). Specifcally, Figure 7b 
shows some bounding contours created by the users, while Figure 9 
illustrates sample gestures performed by the users for each object. 
Overall, by utilizing the bounding contour creation methods, the 
users could build bounding contours that met the requirements for 
the image recording step. Meanwhile, the users could grab the object 
with diferent but common gestures when following the orientation 
indicator and textual suggestions. 

For the object pose estimation (Figure 8a), the average precision 
at 0.5 3D IoU was 0.7073 and the 2D pixel projection error was 
0.0569, showing comparable performance to the result of 0.7218 
(3D IoU) and 0.0520 (projection error) in CenterPose [47]. As for the 
viewpoint estimation, the azimuth error mean was 0.8147 and the 
elevation error mean was 0.8681. Typically, the performance of the 
toy car was not as good as the other categories. This was partially 
due to its complicated shape and the users were not able to draw 
a precise bounding box. We will discuss it later. The cereal box 
category was also challenging because of the larger length-width 
ratio, which made it more difcult to follow in rotation-dominant 
manipulation. We also observed that users were having difculty 
in aligning the cereal box’s width with the bounding box’s width 
during image recording. For the hand pose estimation, the average 
3D error of MPJPE for each user was 15.10mm, showing state-of-
the-art performance compared with the result of 12.32mm in [52]. 
For the PCK results, the blue solid line in Figure 8b shows the 
average evaluation result for all the users’ hands. The two dashed 
lines stand for the two users’ datasets with the best and worst 
performance during training. We choose a popular 3D hand dataset 
[82] trained on the same network as the baseline, shown as the 
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Dataset Bottle Cereal box Toy car Flashlight Mean

Average precision at 0.5 3D IoU (Higher is better)

Objectron [1] 0.8021 0.8211 - - 0.7218

Ours 0.8326 0.6741 0.5319 0.7905 0.7073

Mean pixel error of 2D projection (Lower is better)

Objectron [1] 0.0400 0.0379 - - 0.0520

Ours 0.0458 0.0569 0.0816 0.0433 0.0569

Average precision at 15° azimuth error (Higher is better)

Objectron [1] 0.9561 0.9361 - - 0.8398

Ours 0.9503 0.7874 0.5832 0.9380 0.8147

Average precision at 10° elevation error (Higher is better)

Objectron [1] 0.8881 0.9467 - - 0.8560

Ours 0.9492 0.8213 0.7969 0.9048 0.8681 (b)
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Figure 8: (a) The training results of the 3D object pose esti-
mation neural network. (b) The training results of the 3D 

(a)
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(c)

(d)

hand pose estimation neural network. 

orange solid line. The hand pose estimation results show that the 
user-collected datasets have adequate performance compared with 
state-of-art datasets. Figure 9 demonstrates some examples of the 
hand pose and object pose test results on the user-collected datasets. 
Overall, the decent training results indicate that ARnnotate has the 
capability to support users to create high-quality custom datasets 
used for 3D hand and object pose estimation. 

5.3 Qualitative Feedback on the System 
Usability 

As an AR-based user interface, the Likert-type questionnaire ratings 
illustrate the users’ subjective feedback on the system usability, 
which are shown in Figure 10. Regarding the bounding contour 
creation, the users agreed that the specifc shape of the bounding 
contour helped them place and manipulate the physical object (Q6, 
AVG=4.92, SD=0.29), and they were confdent to create an accurate 
bounding contour using our system (Q1, AVG=4.33, SD=0.89). “The 
[bounding contour] creation is a brilliant idea, and is fun as well. Now, 
I know where I should move and rotate the object when I look at it. 
(P3)” Yet, one user raised that “I need more time to think about how to 
arrange those primitives for that toy car. I thought maybe there could 
be a better solution. (P11)” We will discuss this concern in Section 6. 
Meanwhile, the majority of the users provided positive feedback 
about the hand manipulation with the virtual bounding contour (Q2, 
AVG = 4.33, SD = 0.65) and the depth occlusion provided by AR-
HMD (Q5, AVG = 4.17, SD = 0.83). “It was super cool that I could feel 
the depth in AR with that occlusion visual efect. I thought I followed 
the clip precisely. (P8)” But, this user also commented: “For that 
hand mesh, maybe a skeleton model could be better. Because using 
that hand mesh, sometimes I could not see the fngers in the back. 

Figure 9: Example test results of the hand and object pose 
estimation neural networks trained using the datasets col-
lected by the users. (a) Bottle. (b) Cereal box. (c) Toy car. (d) 
Flashlight. For each object category, top row shows ground 
truths, while bottom row contains the prediction results. 

(P8).” This could be addressed by allowing users to select diferent 
visual efects of the hand model, and guiding users to walk around 
the in-situ animation from diferent perspectives before recording. 
One key feature of our system is to process the interaction clips to 
help users align the objects more accurately. This feature received 
complimentary feedback (Q7, AVG = 4.83, SD= 0.58). “I was surprised 
that the turning of the animation was so fuent that I could easily 
follow it. (P12)” Further, the clear UI of the system was welcomed 
by the users (Q8, AVG = 4.67, SD = 0.65). “I like the idea that you put 
those buttons right next to the virtual objects. Really straightforward 
to follow. (P5)” Last but not least, the standard SUS survey result 
was 90.67 out of 100 (SD=8.84), which indicated the satisfactory 
usability of the system. 

0 1 2 3 4 5 6 7 8 9 10 11 12

I feel confident to create an accurate bounding contour
using the target object as reference. (Q1)

The bounding contour can be held in the same way as 
how I want to grab the physical object. (Q2)

I am able to keep my hand gesture unchanged with the 
help of the finger indicators. (Q3)

It is intuitive to use the orientation indicator to notify me whether 
I have recorded the object from all the possible perspectives. (Q4)

With the help of the depth occlusion, I am confident I hold the 
physical object in the same way as in the previous stage. (Q5)

The specific shape of the bounding contour helps me remind of what 
position/orientation should I manipulate the physical object to. (Q6)

Overall, I can easily and accurately follow the movements of the 
interaction clips in AR. (Q7)

Overall, the system UI is clear and easy to follow. (Q8)

Slightly Agree Strongly AgreeSlightly Disagree NeutralStrongly Disagree

Figure 10: The results of the qualitative feedback on the sys-
tem usability. 

https://AVG=4.33
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6 LIMITATION AND FUTURE WORK 

6.1 Complicated Hand-Object Interaction 
The hand-object interaction supported by ARnnotate focuses on 
the objects that can be grabbed with a fxed gesture (e.g., using a 
‘fst’ gesture to hold the handle of a cup, or using a ‘grasp’ gesture 
to hold a milk box). And the approach of binding a bounding contour 
onto the user’s hand was proved to be feasible in the user study. 
Yet, for some objects such as scissors and smaller objects, users may 
grab them in more complex ways (e.g., only using three fngers to 
hold scissors, or unconsciously rotating a pill bottle when using 
fngertips to hold the cap portion). In these scenarios, additional 
DoFs of the hand gesture are introduced due to the free movements 
of the fngers, which may reduce the accuracy of the hand pose 
labeling. One way to resolve this issue is to introduce physics-
based hand-object contact point models [3, 30, 55]. By detecting the 
contact points between the fngers and the bounding contour, users 
can hold bounding contours more precisely. The adoption of this 
model also enables the double-hand interaction that is not currently 
supported since most of the current hand pose estimation networks 
[24, 82] focus on single-hand interaction detection. Meanwhile, by 
scanning a physical object as 3D mesh using LiDAR-capable devices 
[34, 71], we can generate a meshed model of the physical object for 
the implementation of the contact point model. In addition, some 
gestures may introduce self-occlusions of the hand so that the bare-
hand tracking module cannot output the correct gestures. Potential 
solutions can be deleting those data samples where the confdent 
values of the hand tracking module are lower than a threshold, and 
warning users to avoid such gestures using the gesture indicators. 

Further, the complexity may also be introduced due to the geo-
metric features of the objects. During the user study, we noticed 
that it was challenging for the users to follow some interaction clips. 
“That cereal box is too thin and tall. When I manipulated the virtual 
one, I didn’t realize it could be so hard to follow those rotational move-
ments. (P9)” In light of this, it would be a future research direction 
to study that given diferent types of objects (e.g., cereal boxes), 
what movement patterns are not recommended (e.g., rotate the 
bounding contour of a cereal box too fast). In addition, we observed 
that diferent users preferred diferent ways of manipulating the 
objects (e.g., some users were good at following translation move-

ments). Such personal preferences can be considered together to 
provide personalized suggestions for recording interaction clips that 
are more easily to be followed. In the next sub-section, we will also 
discuss how to deliver these suggestions to users. 

6.2 Additional Supports and Suggestions for 
Users with Diferent Levels of Expertise 

During the user study, the users had diferent levels of expertise 
in CV and sketching. As mentioned before, P11 was not confdent 
about the bounding contour creation for the objects with compli-

cated geometric shapes. Meanwhile, we observed that the network 
performance of the toy car was slightly lower than the others, 
which was partially attributed to the difculty in creating an ac-
curate bounding contour of the toy car. We also observed that for 
complex objects, diferent users selected diferent primitives to con-
struct the bounding contour (Figure 7b), while some choices may 
not be optimal. To help novice users generate a better bounding 

contour for complex objects, we could embed a web-based search 
engine to fetch suggested 3D sketches given the name or sample 
image of the target object, and show them in AR as an additional 
reference. Meanwhile, the mesh scan of a physical object mentioned 
in the previous sub-section could serve as another reference. 

Moreover, the user study results proved the feasibility of the 
workfow we propose to support any end-user to collect decent-
quality datasets. Yet, a user, who is a researcher in graphics and CV, 
raised that “I know the process of labeling datasets well, so I want the 
system to show me the results and let me double-check if the labels are 
accurate enough. (P4)” Previous works suggest that an interactive 
system needs to adapt to users’ personal experience [3, 15, 32]. We 
could address this consideration by providing an in-situ placed 
video editor for expert users to directly review the datasets, and 
manually delete the unsatisfactory data. On the other hand, for the 
users who do not perform well in following the interaction clip, the 
system could adaptively show additional guidance. For instance, 
the color of the bounding contour could change when it is about to 
move in another direction. Meanwhile, following prior works in 
the MR tutoring area [32, 65], in-situ virtual elements such as an 
arrow attached next to the bounding contour can be used to indicate 
its moving direction and speed, while the same idea can also be 
used in the label recording to indicate the suggested patterns of 
manipulating the bounding contour. 

6.3 Fatigue When Moving Hands in AR 
While we suggest collecting a specifc number of images to guar-
antee satisfactory performance of the neural network, ARnnotate 
supports users to record an interaction clip with arbitrary time 
length. However, several users pointed out the arm fatigue problem. 
On one hand, it is partially because the current AR-HMD’s image 
saving rate is only 15 fps. Yet, with the advances in hardware, we 
envision that images can be saved more efciently. Furthermore, 
earlier works [28, 35] also address the fatigue problem and pro-
vide plausible solutions by using mid-air pointing or other ways 
of indirect manipulation. Unfortunately, these solutions do not ft 
our needs. Another solution could be gamifying the repetitive and 
boring dataset collection process so that users will be distracted 
from the tiredness [68, 69]. 

6.4 Expansion of the Dataset 
We have shown the efectiveness of enabling end-users to collect 
RGB-based hand-object interaction datasets using a novel AR-based 
workfow. In the future, we would like to expand the system ca-
pability in several directions. We could provide hand and object 
segmentation labels [6, 7, 70] by projecting the bounding contours 
and the hand mesh model detected by the AR-HMD onto the im-

ages. Specifcally, fusion algorithms [34] can be used to directly scan 
physical objects as accurate bounding contours, while calibration of 
diferent users’ hands will also be considered. Meanwhile, it would 
be straightforward to add the depth information besides the RGB 
images into the datasets given that current AR-HMDs have already 
embedded the depth perception capability. Moreover, if users can 
keep accumulating their own datasets, their personal annotation 
preferences and the corresponding data can be used for transfer 
learning and dataset synthesizing [21, 46, 64]. 
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6.5 Large-scale Dataset Collection 
Currently, our system mainly focuses on the collection of user-
specifc datasets, and therefore, only suggests end-users collecting 
a specifc number of data samples to train the networks. Yet, our 
system also has the potential to be leveraged for constructing a 
large-scale bench-marking dataset for the development of image-

based pose estimation research in the CV area. To this end, we 
envision allocating our system to a large number of users and 
allow for collecting data with diferent hand skin colors in various 
environment backgrounds via crowd-sourcing [12, 31]. Meanwhile, 
deploying our system to phone-based platforms would help further 
expand the scale of the bench-marking dataset collection. With 
the advents of hardware (e.g., LiDAR) and software (ARKit [4]), 
AR-capable cell phones have been utilized to collect datasets [41]. 
We envision that bare-hand tracking would be embedded into cell 
phones in the near future. By mounting the phone in front of the 
user, ARnnotate can be used in the same way as the HMD-based 
system. Yet, the limited feld-of-view and data storage issues may 
require designing additional supportive features. 

7 CONCLUSION 
In this paper, we presented ARnnotate, an AR interface for end-
users to create a custom dataset for hand and object pose estimation. 
In order to address the issues of complicated hand-object occlusion 
and the needs for collecting custom data, we introduce a work-
fow that fully leverages the spatial awareness and hand-tracking 
capability enabled by an advanced AR-HMD. Specifcally, a user 
can create a realistic virtual bounding box using the target phys-
ical object as spatial reference in AR. ARnnotate records dataset 
labels when the user manipulates the virtual bounding box, and 
records dataset images when the user manipulates the physical 
object to follow the in-situ replayed animation of the bounding 
box and hand model. We introduced a series of visual hints and 
data processing approaches to facilitate the dataset creation and 
increase the accuracy of the labels. In the user study, we frst quanti-
tatively proved that, with ARnnotate, users were able to accurately 
create image-label pairs in terms of position and rotation accuracy. 
Then, we trained deep neural networks using the datasets collected 
by the users. The satisfactory results compared with the existing 
benchmark dataset works illustrated the feasibility of our system. 
Meanwhile, the complimentary subjective feedback from the users 
further proved the usability of the interface of ARnnotate. To sum 
up, we believe this work opens up a novel perspective of utilizing 
AR as assistance to resolve problems in 3D-domain dataset collec-
tion. And we envision it fosters more HCI applications leveraging 
hand-object pose estimation in the future. 
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