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Figure 1: An overview of ScalAR. (a) A VR authoring environment that consists of various virtual scenes synthesized from
the collected real-world sample scenes. A designer is immersed in the virtual environment and authors the semantic-level
associations of the AR contents in each scene, then adjusts and validates the design by traversing across all the given scenes.
(b-1 to b-3) ScalAR adaptively renders the AR contents in different target environments using the semantic adaptation model
fit from the designer’s demonstrations.

ABSTRACT
Augmented Reality (AR) experiences tightly associate virtual con-
tents with environmental entities. However, the dissimilarity of
different environments limits the adaptive AR content behaviors
under large-scale deployment. We propose ScalAR, an integrated
workflow enabling designers to author semantically adaptive AR ex-
periences in Virtual Reality (VR). First, potential AR consumers col-
lect local scenes with a semantic understanding technique. ScalAR
then synthesizes numerous similar scenes. In VR, a designer au-
thors the AR contents’ semantic associations and validates the
design while being immersed in the provided scenes. We adopt a
decision-tree-based algorithm to fit the designer’s demonstrations
as a semantic adaptation model to deploy the authored AR expe-
rience in a physical scene. We further showcase two application
scenarios authored by ScalAR and conduct a two-session user study
where the quantitative results prove the accuracy of the AR content
rendering and the qualitative results show the usability of ScalAR.
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1 INTRODUCTION
Augmented Reality (AR) technology has been broadly applied to
education [90, 98], medical [74], entertainment [63, 69] and en-
gineering [10, 62] areas. One substantial advantage of these AR
experiences is the tight associations between the functionalities
of the digital assets and the affordance of the physical environ-
ments that are established by the precise placements and bindings
defined during designing processes. Although existing authoring
tools support designers to create AR contents that are tracking-
based (i.e., can be fixed in mid-air using the tracking capability of
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AR capable devices [75]), marker-based (i.e., can be attached to fidu-
cial markers [27, 73]), or geometry-based (i.e., can be aligned with
edges/planes/meshes [18, 65]), few authoring systems enable creat-
ing semantically adaptive AR experiences which possess semantic
understanding [12, 32] of the surrounding environments and ap-
propriately adjust the spatial relationships between the involving
digital contents and the relevant physical objects.

Unlike tracking-based, marker-based, and geometry-based AR
experiences, which can be easily deployed in different scenes as
long as the same tracking features exist, it is challenging to au-
thor semantically adaptive AR experiences due to the complexity
of granting consistent spatial and semantic associations under di-
versified deployment scenarios. For instance, a designer may want
to place an AR painting that is hung on the wall behind the sofa
while holding the similar size of the table in front of the sofa. Mean-
while, the same AR experience is expected to be consumed both
in a living room with a sofa and two tables, and another living
room with two chairs but no table. To this end, we are motivated
to explore an authoring workflow that supports designers to define
the semantic relationships of the AR contents, validate and test the
design in abundant scenarios, and produce AR experiences that AR
consumers can broadly share with each other.

The metaphor of immersive authoring provides designers with
an in-situ and ad-hoc authoring experience [36, 88, 95]. While being
situated in an environment, designers can exploit the surroundings
as spatial and contextual references to endow semantic awareness
to the AR contents. However, immersive authoring only allows
designers to customize AR experiences for one specific scene. The
AR contents do not hold explicit relationships with the physical
entities, which implies that any slight variation in a different en-
vironment may easily invalidate the design. In addition, it is time
and effort consuming for designers to be physically present in one
or more target scenes. On the other hand, Virtual Reality (VR) has
been broadly adopted owing to the immersive authoring capability
[59, 97]. Typically, designers can create AR experiences in VR as
well by referring to the virtual replica of the physical environments
[17, 70, 89]. Meanwhile, the flexibility of VR enables designers to
travel across different scenarios free from temporal and spatial lim-
itations [38, 92]. We envision that designers can efficiently tailor
and validate their designs in numerous virtual environments to
grant AR experiences with semantic-level adaptation capability.

We present ScalAR, an integrated authoring workflow that al-
lows designers to create AR experiences that can be generalized to
various environments while using existing and synthesized scenes
as semantic references. ScalAR is composed of three interconnected
parts: (1) An AR scanning application that supports collecting sam-
ple physical scenes from local environments, (2) a VR authoring
studio for creating AR experiences, and (3) an AR client that deploys
the AR experiences in the environments. Once an AR designer has
a basic idea of where the AR experience should be deployed (e.g.,
office, kitchen, living room, etc.), the designer can invite potential
AR consumers to capture their local scenes as samples. The AR
scanning application records the spatial layouts of the scenes lever-
aging a scene understanding algorithm. To provide the designer
with diverse validation scenarios, we synthetically generate more
samples using a genetic algorithm. Then, these samples are im-
ported into the VR authoring studio and are represented as realistic

virtual scenes (Figure 1a). While being immersed in a virtual scene,
the designer can exploit environmental affordance as references
and define the semantic behaviors of the AR contents with the help
of the VR authoring interface. The VR authoring studio also allows
for rapid navigation across multiple virtual scenes to enable the
designer to modify and validate the design. Upon the completion
of the authoring, ScalAR follows a decision-tree-based algorithm
to fit the designer’s demonstrations in all the provided scenes as a
semantic adaptation model. Finally, in the AR client, the model is
utilized to deploy the authored AR experience based on the AR con-
sumers’ local layouts (Figure 1b-1 to b-3). In summary, we highlight
our contributions as follows:

• An integrated system workflow for collecting physical scenes,
defining and validating semantically adaptive AR experiences
in synthetically generated VR environments, and deploying the
experiences in different physical scenes.

• An AR interface for scanning the physical environment, an im-
mersive VR authoring studio for manipulating AR contents and
traversing across multiple scenes, and an AR interface for deploy-
ing the AR experiences.

• A decision-tree-based algorithm that fits an AR designer’s demon-
strations as a semantic adaptation model for adaptively rendering
the AR contents in different deploying environments.

2 RELATEDWORKS
2.1 Semantically Adaptive AR Experiences
Many AR experiences have been proposed in various application
areas for improving working efficiency, industrial productivity, and
quality of life [4]. An AR experience precisely superimposes virtual
contents on the real world to intuitively deliver digital augmenta-
tion with respect to the affordance and functionalities of the attach-
ing physical entities. More importantly, the AR experience is ex-
pected to adaptively maintain the same associations in diverse and
dissimilar deploying environments. Considering the techniques that
are utilized to achieve this capability, we classify AR experiences
into four major types: tracking-based,marker-based, geometry-
based, and semantic-based AR experiences (Figure 2).

Tracking-based AR experiences utilize the tracking capability
of AR to fix 3D digital contents in the real world. Spatial [75] ren-
ders virtual avatars next to AR consumers to improve the social
presence during remote collaborations. Mobi3DSketch [43] allows
for creating 3D sketches floating in mid-air. These AR experiences
can be deployed anywhere using an AR-capable device since they
usually focus on realistic 3D visualization and standalone function-
alities. Yet, the digital augmentation has limited spatial or semantic
associations with the deploying environments.

Marker-based AR experiences use intermediate tangible carriers
to connect digital assets with the physical world. AR contents can
be attached onto spatially placed fiducial markers [19, 68, 71, 85, 86].
Meanwhile, ARIoT [39] and Scenariot [35] leverage smart objects
as the spatial and functional references to render AR icons and
interfaces in-situ. Consumers can visualize the digital contents as
long as the reference markers exist in the target scene. Yet, the addi-
tional settings and indirect spatial associations hinder the spatiality
and flexibility of these experiences.
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Figure 2: The four types of AR experiences. Tracking-based:
Fix AR contents in mid-air through the tracking capability
of AR. Marker-based: Attach AR contents to fiducial mark-
ers or smart objects. Geometry-based: Place AR contents
by referring to the geometric features in the environment.
Semantic-based: RenderAR contents considering the seman-
tic information of the physical entities. ScalAR aims at the
authoring of semantic-based AR experiences.

Geometry-based AR experiences bind AR contents with the geo-
metric features of the physical entities that are extracted by various
computational algorithms. Typically, AR contents can be aligned
with edges [65], surfaces [1, 2, 33], depth maps [16], and 3D meshes
[18, 24, 60], which largely enriches application scenarios and re-
duces deployment difficulties. However, impreciseness and ambi-
guity of the AR content placements may be introduced due to the
duplicated and unexpected features detected in the environments
(e.g., an AR potted plant could be unreasonably rendered on a sofa
plane, or on a mistakenly detected plane on a floor lamp).

Semantic-based AR experiences rely on both the semantic mean-
ings and spatial properties of physical entities to render AR contents
by leveraging semantic understanding techniques [12, 32]. Han et
al. [28] achieves realistic trajectory simulation of the AR contents
by assigning different material properties to the engaging physical
objects. Retargetable AR [77] adjusts AR avatars’ behaviors accord-
ing to the functionalities of the nearby objects. Researchers further
implement optimization algorithms to fulfill the adaptation. Liang
et al. [50] develops an algorithm to synthesize AR pets’ behaviors
based on the indoor layouts. Lang et al. [44] and SemanticAdapt
[9] optimally place MR assets and interfaces around users consid-
ering the semantic and functional associations with respect to the
physical objects, while Lindlbauer et al. [52] utilizes the semantic
implications behind human activities to adjust the level-of-detail
of MR interfaces. Tailor Reality [15] further embraces human’s vi-
sual perception of different entities as the semantic references to
restructure physical layouts in MR. Compared with geometry-based
approaches, the additional identity information partially resolves
the ambiguity of rendering AR contents in complicated scenes.
More importantly, these AR experiences associate the functional-
ities of the AR contents with the affordance of the surrounding
objects so that they can be accurately deployed to different environ-
ments. Considering the semantic-level perception and adaptation
capability, we identify this type of AR experiences as semantically
adaptive AR experiences.

In most semantic-based systems, the adaptation is limited to the
object-level semantic associations that can be explicitly interpreted
by the pre-designed computational algorithms. Yet, spatial variation

and duplication/absence of the physical objects in different scenes
may generate unexpected corner cases that reduce the performance
of the algorithms. For instance, an AR cat that is designed to jump
from a sofa to the coffee table may not behave reasonably in a room
where there is no coffee table in front of the sofa or there is only a
dining table but a real cat usually does not tend to jump onto it. In
contrast, we aim to adopt an ad-hoc authoring process to eliminate
the implicit semantic nuances and expand the semantic-level AR
content associations to the entire environment. However, although
multiple authoring tools have been proposed for creating tracking-
based (e.g., Unity3D [80] supports designers to create 3D holograms
for AR-capable devices), marker-based (e.g., Vuforia [85] allows for
creating AR contents attached on image targets), and geometry-
based AR experiences (e.g., ARKit [2] assists rendering virtual assets
on the 3D mesh of the environments), few works support authoring
semantically adaptive AR experiences owing to the complexity of
accurately defining the semantic-level associations while maintain-
ing the adaptation capability in diverse deploying scenes. To this
end, we strive to design an authoring system enabling designers to
create semantically adaptive AR experiences that extensively utilize
the semantic information of the physical environments and actively
adjust the AR content behaviors in different scenarios.

2.2 AR Authoring Tools
Authoring AR experiences requires designers to explicitly assign
spatial behaviors of the virtual contents with respect to the physi-
cal environments. Desktop-based AR authoring tools [25, 46, 55]
have shown compelling capabilities (e.g., Unity3D [80] and Unreal
[81] support designers to build cross-platform AR applications and
design complicated AR animations and interactions). Yet, since de-
signers are isolated from the target environments, the spatial and
semantic associations relevant to the physical entities, which are
one of the critical characteristics of AR experiences, may not be
accurately and smoothly defined. On the other hand, borrowing
the metaphor of the immersive authoring [47], prior arts bring
designers to the target environments during authoring. By leverag-
ing physical objects as spatial references, designers can create AR
contents that are precisely aligned with the surroundings [36, 45].
SemanticPaint [82] and SceneCtrl [95] immerse users into the se-
mantic scans of the environments to facilitate labeling and modify-
ing physical scenes in AR, while Pronto [49] enables designers to
add AR contents into videos by immersive enactions. In addition,
spatially sensitive AR animations and interactions can be created
through in-situ demonstrations by referring to the physical entities
[5, 6, 48, 93]. However, these works cannot grant the adaptation
capability addressed in the previous section since the AR content
behaviors are defined through in-situ manipulation without di-
rect virtual-to-physical bindings. Therefore, while acknowledging
the advantages of the immersive authoring metaphor, we aim to
develop a system that allows designers to provide immersive manip-
ulations of the AR contents in diversified scenarios and distills the
demonstrations as a mathematical model for adaptively rendering
the AR contents in different environments.
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2.3 Using VR for Authoring
Researchers have leveraged Virtual Reality (VR) as authoring plat-
forms to create VR/AR applications. One substantial attribute of
VR is the immersive experience within the 3D domain (e.g., immer-
sive VR games [67] and designs [78]). Due to the high similarity
between AR and VR in terms of the immersiveness, prior works
have proposed to author AR experiences in the virtual replica of the
physical environments to fully leverage the environmental affor-
dance [17, 70]. XRDirector [61] introduces a cross-device immersive
authoring system to collaboratively create interactive AR/VR ex-
periences. Meanwhile, many works have explored the capability
of transferring the spatial and contextual information in the real
world to VR through immersive demonstration in the physical en-
vironments [8, 29, 51, 76]. On the other hand, the flexibility of the
VR domain allows effortless travel across infinite spaces and em-
powers users with more capabilities beyond physical limitations.
Some works immerse trainees in numerous virtual environments
to rapidly learn skills [72, 96]. In VR, users can experience adaptive
real-walking that is not limited to the current situated physical
spaces [56, 83]. Spacetime [92] introduces a novel interaction form
allowing VR users to edit virtual objects without the limitation
of space and time. Similarly, Remixed Reality [53] provides users
with the freedom to travel in space and time in a virtual environ-
ment. Furthermore, Jetter et al. [38] and Horizon Workrooms [34]
construct versatile and adaptive VR spaces that support realistic
sketching and typing experiences. FlowMatic [97] supports pro-
grammers to create interactive virtual scenes through an immersive
visual programming tool. Most recently, DistanciAR [89] allows
designers to remotely author on-site AR experiences while being
situated in a VR scene.

Inspired by these prior arts, we embrace VR as the main author-
ing interface. Our system constructs the authoring environment
by collecting physical layouts from the real world and rendering
them in VR using realistic CAD models. This way, the affordance of
the original environment can be mostly preserved. Designers can
conduct the same immersive authoring as they do in an AR envi-
ronment. Moreover, since VR can free users from spatial limitations,
we synthesize more virtual scenes and enable designers to rapidly
assign and adjust the AR content behaviors under diversified con-
ditions without leaving the current physical location. Additionally,
by introducing the immersive programming metaphor adopted in
prior works [97], designers can explicitly define the semantic-level
associations of the AR contents, which further facilitates our sys-
tem to convert designers’ demonstrations as the adaptation models
to render the AR experiences in different physical environments.

3 SCALAR
3.1 Characteristics of Semantically Adaptive

AR Experiences
It is important to first clarify the characteristics of the semantically
adaptive AR experiences considered in this work. First, we aim to
author an AR experience that is deployed in a physical scene with
a series of spatially distributed objects that hold specific affordance.
For example, an AR decoration experience is deployed in a living
room with a virtual curtain to cover the window, a virtual fireplace

beneath the TV, and several virtual paintings hung on the wall.
Typically, the AR contents are spatially aligned with multiple phys-
ical objects to achieve the semantic-level digital augmentation (e.g.,
in Figure 1b, an AR display is precisely placed on the surface of a
countertop next to a range in order to facilitate AR consumers to
watch video tutorials while preparing and cooking foods). To this
end, two levels of associations should be explicitly defined for a
semantic adaptive AR experience:
• Identity association implies which physical entities the AR
content should be bound to in different scenes. For example,
in Figure 1b, the AR display is bound with the countertop that
is next to the range when there is more than one countertop,
otherwise directly bound with the range.

• Spatial association specifies the spatial attributes (i.e., the
6DOF transform and the 3DOF scale of an physical/virtual ele-
ment) of the AR content relative to the binding physical entities’
geometric features (i.e., the vertices, edges, faces, and volume
of the object’s 3D bounding box) following the prior AR content
placement works [9, 31, 65]. E.g., in Figure 1b, the AR display
is precisely aligned with the back edge on the countertop’s top
surface while the size is coupled with its width.
Furthermore, to ensure that the digital augmentation is consis-

tently and accurately delivered in different scenes, the AR expe-
riences should dynamically adjust the two-level associations in
response to the potential cross-scene variations. Specifically, we
classify the scene variations as:
• Spatial variation represents the change of the spatial attributes
of the physical entities. For instance, the sizes of the countertops
vary in Figure 1b-1 and 1b-3. Or, a coffee table is located at
different sides of a chair.

• Quantity variation refers to the change of the quantity of each
physical object. For example, in Figure 1b-2, no countertop exists.
Or, the first scene consists of two chairs and one table, while the
second only has one chair.

3.2 ScalAR System Design
Following the characteristics discussed above, we present ScalAR,
an authoring workflow that enables an AR designer to define and
adjust the two-level associations of each AR content within nu-
merous VR scenes that are synthesized from the real environments
with the two-level variations. Then, we fit the designer’s demonstra-
tions as a generalized model using a decision-tree-based algorithm
for each AR content. Finally,the model is applied to render the
corresponding AR content in different scenes. Now, we describe
the workflow of ScalAR by the five consecutive steps (three major
sections and two transition steps) shown in Figure 3.

After a designer decides to create an AR experience for a specific
scene (e.g., an AR experience for living room environments), multi-
ple potential AR consumers are invited to collect their local scenes
including the identities and spatial attributes of all the present phys-
ical objects using a semantic understanding technique supported
by our system (Figure 3a). For each collected scene, a scene syn-
thesis algorithm is applied to generate a large collection of virtual
scenes that consist of the same objects but vary in their spatial at-
tributes, which is defined as a semantic group. Typically, the scene
variations are achieved in this process where the spatial variations
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Figure 3: The workflow of ScalAR. (a) Potential AR consumers collect their local physical scenes. (a to b) ScalAR synthesizes
plentiful virtual scenes that are highly similar to the collected scenes and groups them accordingly. (b) In VR, a designer
defines both the identity and spatial associations of eachAR content as semantic bindings, and adjusts them in all the provided
virtual scenes. (b to c) We then use the authored semantic bindings to fit a semantic adaptation model. (c) When deploying the
AR experience in a physical scene, the semantic adaptation model takes the physical layout as the input and consecutively
determines the two-level associations of the AR content.

happen within each semantic group, while the quantity variations
exist across different semantic groups. ScalAR then uploads both the
real and generated scenes to the VR side and spatially distributes
the involving objects using pre-assigned CAD models to construct
the authoring environment (e.g., all the virtual scenes in Figure 3b).

Now in VR, the designer is immersed in one virtual scene to
start the authoring process. ScalAR supports the designer to define
the behavior of each AR content using semantic bindings that
represent the two-level associations relative to the current scene.
First, the designer informs our system of the identity associations
by defining a primary binding object and more reference binding
objects if applicable.

• A primary binding object represents the physical entity that
dominates the semantic and spatial association of the AR content.
For instance, in the first virtual scene in Figure 3b, the designer
intends to place a virtual lamp on the table (filled) when there
exist tables in the living room.

• A reference binding object serves as an additional reference
of the primary binding object for two purposes. (1) Clarify the
identity of the primary binding object when it is duplicated in the
scene. For example, the first virtual scene in Figure 3b involves
two tables. The designer assigns the sofa (unfilled) as the refer-
ence binding object to indicate that the AR lamp should always
be placed on the table that is on the left side of the sofa. (2) Ad-
dress the needs when the spatial association of the AR content is
coupled with multiple objects. In the first virtual scene in Figure

3b, the relative spatial attributes of the AR lamp are expected to
be associated with both the table and the sofa.

The designer then authors the spatial association bymanipulating
the AR content while referring to the geometric features of both
the primary binding object and reference binding objects. In the first
virtual scene in Figure 3b, the AR lamp is placed at the corner of
the table surface that is closest to the sofa, and it is always facing
towards the sofa.

Following the authoring in the initial scene, the designer starts
to travel across all the other provided scenes within and across
different semantic groups to adjust or re-define the semantic bindings
in response to the provided scene variations. For instance, within
the first semantic group of Figure 3b, the designer adjusts the spatial
association of the AR lamp when the layout of the sofa and tables
varies. When both the tables are far from the sofa as shown in the
third virtual scene, the designer also changes the identity association
to the sofa (filled) while placing the lamp on the armrest. Meanwhile,
in another semantic groupwhere no table exists, the designer assigns
the lamp’s identity association to the sofa (filled) and places it on the
armrest. Typically, in order to reduce the workload, we pre-assign
semantic bindings to the rest of the virtual scenes based on the
authoring in the initial scene. This way, the designer only performs
adjustments in the scenes with significant variations. The details
of this feature will be explained in Section 4.3.

After the designer validates all the provided scenes, our system
implements a decision-tree-based fitting algorithm to distill the
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designer’s demonstrations as a semantic adaptation model for
rendering the corresponding AR content in a physical scene. Briefly,
for each semantic group, we train an SVM model for identity as-
sociation prediction using the virtual scene layouts as inputs and
the activated identity association objects as outputs. Then, for each
group of the demonstrations that holds the same identity associa-
tion, we use the spatial association information to fit an AR content
placement model in two steps: (1) select the geometric features of
the identity association objects that dominate the AR content place-
ment, and (2) calculate the average spatial attributes with respect
to the corresponding geometric features for placing the AR content.
The fitting details will be explained in Section 4.4.

Eventually, when deploying the authored AR experience, our
system follows the semantic adaptation model (Figure 3c) to render
each AR content given the new physical scene as the model input.
Specifically, ScalAR (1) compares the involving objects with the
required inputs of all the trained SVM models to select one appli-
cable SVM model to determine the identity association. Note that,
if no proper SVM model exists, our system will not render the AR
content, and (2) fetches the corresponding AR content placement
model, adopts the activated geometric features, and calculates the
relative spatial attributes of the AR content to determine the spatial
association. For instance, in Figure 3c, the AR lamp is accurately
rendered using the detected table and sofa as the spatial references.

4 IMPLEMENTATION OF SCALAR
In this section, we explain the design and implementation of ScalAR
step-by-step, namely, (1) physical scene collection, (2) virtual scene
synthesis, (3) authoring interface in VR, (4) fitting of the semantic
adaptation model, and (5) deployment of the AR experience.

4.1 Physical Scene Collection
Some prior semantic-based works [50, 77, 82] implement semantic
segmentation [12, 26] to acquire the identity and spatial informa-
tion of the physical environments. Yet, these approaches require
massive training data and computational power. Instead, we adopt
an integrated approach leveraging a 2D object detection network
and a 3D scene understanding module to record the physical scene
using any AR-enabled device with scene understanding capability.
Specifically, a HoloLens 2 [58] is used in our implementation.

A potential AR consumer wears the AR-HMD and uses the AR-
side system of ScalAR to complete the scene collection process. The
consumer needs to complete two consecutive steps, plane detection
and object detection, to collect the required data of the scene. An
AR main menu that floats next to the consumer’s left hand is used
to select the steps and provide the corresponding textual guidance
(Figure 4a-1). First, the consumer enters the plane detection step
and simply walks inside the environment. ScalAR adopts a scene
understanding module1 embedded in the HoloLens 2 to detect and
record the 6DOF of the physical planes (including walls, floors, and
object surface planes if applicable) and to dynamically display them
in AR (Figure 4b-1). After confirming that all the critical planes
are detected, the consumer enters the object detection step and
keeps walking in the environment while looking at the surrounding

1https://docs.microsoft.com/en-us/windows/mixed-reality/design/scene-
understanding

physical objects sequentially. In this step, ScalAR records the RGB
images perceived by the AR device, the raycasts of the consumer’s
head transform, and the timestamps.

(b-1) (b-2)

(d-4)(c)

(a-2)(a-1)

(d-3)

(d-1) (d-2)

Figure 4: Physical scene collection and virtual scene synthe-
sis. (a-1) Themainmenu of theAR-side systemof ScalAR for
collecting the physical scenes and deploying the AR experi-
ences. (a-2) The 3D bounding box to represent the physical
object. (b-1) The detected physical planes are dynamically
displayed in the scene. (b-2) The labeled 3D bounding boxes
are displayed in-situ after the data processing. (c) ScalAR
uses pre-assigned CAD models as the virtual replica of the
detected objects to build a realistic authoring environment.
(d-1 to d-4) The synthesized virtual scenes with spatial vari-
ations and quantity variations.

Now, we explain how ScalAR infers the identities and spatial
attributes of the involving objects. We pre-train an RGB-based 2D
object detection neural network with the capability to detect 15
objects (refer to Section 4.6) that are relevant to our application
scenarios and return the 2D bounding boxes. For each object label,
wemanually assign additional placement attributes, namely,wall-
hanging (e.g., cabinets and window blinds are always hung on
the wall), floor-stand (e.g., ranges, dishwasher, and beds always
stand on the floor), and non-planar (e.g., floor lamp does not have
primary planes) to the applicable objects for two purposes: assist the
generation of the 3D bounding boxes explained below and serve
as the object properties required for scene synthesis described
in Section 4.2. Every physical object has at least one placement
attribute. We follow the proposed approaches [11, 88] to process
the data. First, for each timestamp, we feed the RGB image to the
object detection model to return the 2D bounding box of one object
with the highest prediction score. Using the direction of the raycast,
we project the center and four corners of the 2D bounding box from
the image plane to the physical plane that the raycast intersects with.
We mitigate the perspective distortion by averaging the opposite
edges of the projected bounding box as the final width and height
and centering this 2D rectangle at the projected center. Next, based
on the object’s placement attribute and whether the projected plane
is vertical or horizontal, we extrude the projected bounding box
from the projected plane to either the floor or the nearest wall.
Since the recorded physical planes do not have labels, we identify
the floor plane and the wall planes by finding the outermost and
largest horizontal and vertical planes respectively. Finally, across
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all the timestamps, we adopt an empirically set IoU threshold (refer
to Section 4.6) to average all the 3D bounding boxes to one unique
3D bounding box for each detected object.

After the data processing, ScalAR displays the detected objects in-
situ (Figure 4b-2). The consumer can adjust their spatial attributes
through direct manipulation and add more physical objects by
adding empty bounding boxes from the main menu (Figure 4a-2),
assigning object labels, and adjusting the spatial attributes. Once the
consumer finishes the entire scene collection, our system uploads
the physical layout to our online server.

4.2 Virtual Scene Synthesis
Researchers have explored indoor scene synthesis with the opti-
mization algorithms [22, 30, 41, 94]. We follow the same direction to
adopt a genetic algorithm (GA) [40] based approach to synthesize
more scenes for each collected physical scene to provide the AR
designer with diverse scenarios that address the two-level scene
variations. Specifically, we integrate Refixture2 into our system
where the placement attributes are pre-imported as the required
parameters. ScalAR feeds each collected scene to the algorithm and
saves the generated scenes at the backend. The implementation
details of the GA algorithm are described in Section 4.6. Later, we
group both the real and generated scenes with the same collection
of involving objects into the same semantic group. Following this
process, the quantity variations exist across the semantic groups,
while the spatial variations lie within each semantic group. Typically,
the total number of the synthesized scenes needs to fulfill the SVM
model fitting requirements, which will be explained in Section 4.6.

ScalAR further sorts the semantic groups by the number of dis-
tinct identities of the involving objects. Meanwhile, within each
semantic group, we cluster scenes into groups via the mean-shift
clustering algorithm [22, 23] and sort the virtual scenes by mini-
mizing the change of the spatial attributes of the objects between
any two consecutive scenes. Finally, for each virtual scene, ScalAR
applies the pre-assigned CADmodels as the virtual replica of the in-
volving objects and renders them according to the spatial attributes
to construct the VR authoring environment. Figure 4c illustrates
the virtualized scene of a collected physical scene, while Figure
4d-1 to d-4 showcases some of the synthesized scenes.

4.3 Authoring Interface in VR
By leveraging the advantages of immersive authoring and program-
ming in VR, we develop the VR authoring studio allowing for both
intuitive manipulation of the AR contents and abstract-level line
connections to define the semantic bindings and additional dynamic
behaviors of the AR contents. With ScalAR, a designer authors a
semantically adaptive AR experience in VR with three modes: (1)
Edit Mode to define and adjust AR content behaviors and semantic
bindings in the current scene, (2) Traverse Mode to travel across
different virtual scenes, and (3) Test Mode to check the usability of
the AR experiences from an AR consumer’s perspective. Similar to
the AR-side interface, a left-hand-attached main menu is used to
switch among the three authoring modes and toggle on/off other
sub-menus for each mode (Figure 5a-1).

2https://jpc22.github.io
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Figure 5: The VR authoring interface of ScalAR. (a-1) The
mainmenu of the VR authoring studio of ScalARwith three
buttons to switch among the three authoringmodes and the
sub-menus for Edit Mode and Traverse Mode. (a-2) The as-
set menu that holds all the pre-imported AR contents. (a-3)
The scene cursor for navigating the virtual scenes inTraverse
Mode. (b) A designer connects a primary binding object from
the ‘lock’ icon of the AR content to the physical object and
a reference binding object from the ‘chain’ icon of the pri-
mary binding object connection to another physical object
through immersive programming. (c) The warning sign ap-
peared next to the AR content when any of the binding ob-
jects is absent in the current virtual scene. (d) A designer cre-
ates a trigger-behavior binding from the ‘avatar’ model (con-
sumer asset) to the ‘animation’ icon (semantic animation) of
the AR content.

While being immersed in a virtual scene, the designer starts with
the Edit Mode and drags a pre-defined AR content from the asset
menu (Figure 5a-2) to the current scene. Then, the designer defines
the current scene’s semantic binding. For the identity association,
by connecting a line from the ‘lock’ icon floating next to the AR
content to the target environmental object through drag-and-drop
interaction (Figure 5b), the designer can explicitly author the pri-
mary binding object. Meanwhile, the reference binding object can be
defined in a similar way by creating the line connection from the
‘chain’ icon on the primary binding object connection to the target
object (Figure 5b). The designer can always click the same button
to toggle on/off the icon and the line connection for a clear view,
and can delete an AR content or a line connection by clicking the
delete button floating next to the UI elements. To define the spatial
association, the designer can directly manipulate the AR content
while utilizing the affordance of the object as references.

After finishing in one virtual scene, the designer enters the Tra-
verse Mode to validate the initial design. We provide the designer
with a scene cursor (Figure 5a-3) to travel across different scenes
instead of repeatedly showing/hiding the physical objects. By drag-
ging the scene cursor, the physical objects smoothly move, rotate
and scale based on the next target virtual scene. To prevent the
designer from adjusting the AR contents in every virtual scene to
reduce the workload, we apply the semantic binding defined in the
initial scene to the rest virtual scenes by fixing the primary/reference
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binding objects and the relative spatial attributes. For instance, if
a virtual display has been placed on the surface of a countertop
next to the ranges in the first scene, it keeps following the moving
countertop in the Traverse Mode. Meanwhile, if the primary binding
object is duplicated in the current scene while the reference bind-
ing object is defined, our system automatically keeps the primary
binding object as the one that holds the most similar relative spatial
attributes with respect to the reference binding object in the initial
design. For example, the virtual display always follows the counter-
top that is closest to the ranges if there is more than one countertop.
Whenever the scene variation in one virtual scene causes significant
impreciseness or semantic-level ambiguity of the AR content, the
designer can stop traversing and re-enter the Edit Mode to either
adjust the placement of the AR content or change the identity as-
sociation under the current condition. Typically, the designer can
deactivate the previous primary binding object by clicking the ‘de-
activate’ button floating next to the connection line, and create
a new connection as the activated primary binding object. Note
that since the reference binding object is a property of the primary
binding object, the reference binding object should be re-defined as
well. ScalAR only records the activated identity association into the
semantic binding of the current scene. For the quantity variation
that happens across different semantic groups, if one of the binding
objects does not exist, our system shows a warning sign (Figure 5c)
forcing the designer to re-define the semantic binding. The semantic
bindings in different semantic groups are recorded separately. So,
if the designer enters another semantic group where the original
binding objects reappear, the original identity association will be
re-activated. The designer can repeat all the supported operations.
During authoring, the designer validates all the provided scenes
and conducts adjustments if necessary. Our system records all the
semantic bindings even including that of the non-adjusted scenes
as the data samples for the following model fitting process.

As addressed in the Related Works [9, 15, 52], an AR consumer
is another important resource considered in semantic-based AR
experiences. The spatial movement of the AR consumer is often
related to the affordance of the physical objects (e.g., sit on the
sofa, stand in front of the window). Meanwhile, AR contents may
hold pre-designed animations that are spatially aligned with the
environment surroundings [93]. Following the trigger-behavior
metaphor that has been broadly implemented in AR/VR applica-
tions [87, 88, 97], ScalAR enables the designer to create dynamic AR
content behaviors that can interactively react to the AR consumer.
We introduce the consumer asset that represents the spatial at-
tributes of an AR consumer and the semantic animation that
represents the embedded dynamic behavior of an AR content. The
designer can bind the consumer asset and the target of the semantic
animation with the surroundings in the same way as other AR
contents. Then, the designer can create a simple trigger-behavior
binding using the same line connection operation between the
consumer asset and the semantic animation (Figure 5d), implying
that the semantic animation of the AR content is triggered when the
AR consumer holds the designated spatial attributes. Leveraging
the advantage of immersive authoring, our system enables the de-
signers to role-play the AR consumer in the Test Mode to seamlessly
test the correctness of the design in different virtual scenes.

4.4 Fitting of the Semantic Adaptation Model
For each AR content, ScalAR fits a semantic adaptation model using
all the semantic bindings by implementing a decision-tree-based
algorithm. First, within each semantic group, ScalAR trains an SVM-
based identity association prediction model in order to determine
the activated identity association objects given the deploying scene.
Then, for each case of the activated identity association, ScalAR fits
an AR content placement model for accurately rendering the AR
contents with respect to the corresponding binding objects.

4.4.1 Fitting of the Identity Association Prediction Model. Within
each semantic group, the designer may activate different identity
associations in different scenes due to the spatial variation. We
train an SVM model to predict which identity association should
be activated based on the spatial attributes of the involving objects.
Consider an AR content that has n available primary binding objects
across L virtual scenes. Let ej,l ∈ {0, 1} denotes whether the AR
content is bound to the j-th object in the l-th scene. We calculate a
significance score sj =

∑L
l=1 ej,l for each primary binding object and

set the object with the highest significance score as the dominant
object for this AR content. For example, the designer binds an AR
display to a countertop inm virtual scenes, and to the ranges in the
other L −m virtual scenes, wherem > L −m. So, the countertop
becomes the dominant object for the AR display. Then, for each
virtual scene, we construct a spatial feature vector consisting of
the relative spatial attributes of the other n − 1 primary binding
objects within the dominant object’s local coordinate system. In total,
we have L spatial feature vectors and use them to train a multi-class
SVM [91] with the one-versus-rest label encoding. After confirming
the primary binding object, we also get its corresponding reference
binding objects if applicable. We repeat the same procedure for the
other semantic groups.

4.4.2 Fitting of the AR Content Placement Model. For every set of
the semantic bindings that have the same activated identity asso-
ciation, we fit an AR content placement model to render the AR
content relative to the binding physical objects. Similar to the prior
works [3, 31, 65] that determine the spatial relationships between
the virtual and physical objects by referring to the geometric fea-
tures of the physical objects, our fitting process first decides which
geometric features of the identity association objects the AR content
should bind to, then calculates the spatial attributes of the AR con-
tent relative to the corresponding geometric features. Specifically,
we categorize the types of the geometric feature bindings as:

• Point binding implies the AR content is associated with a vertex
of the physical object’s 3D bounding box. E.g., an AR content
keeps a fixed distance from a corner of the primary binding object
(Figure 6a), or faces towards the centroid of the object.

• Line binding implies the AR content is associated with an edge
of the physical object’s 3D bounding box. E.g., an AR content
keeps a fixed distance from an edge of the primary binding object
(Figure 6b), or revolves around an edge of the object.

• Plane binding implies the AR content is associated with a face
of the physical object’s 3D bounding box. E.g., an AR content
moves on a face of the primary binding object (Figure 6c).
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(a) (b) (c) (d)

(e) (f) (g) (h-1) (h-2)

Figure 6: Examples of AR content spatial relationships with
respect to physical entities. The opaque and translucent col-
ors represent the same elements in different virtual scenes.
Red pyramid: AR content; green cube: primary binding ob-
ject; blue cube: reference binding object. Refer to the text for
the detailed descriptions. (a) Point binding. (b) Line binding.
(c) Plane binding. (d) Volume binding. (e) Point binding with
reference binding object. (f) Line binding with reference bind-
ing object (g) Surface binding with reference binding object.
(h-1 and h-2) Volume binding with reference binding object.

• Volume binding implies the volume of the AR content is asso-
ciated with that of the physical object. E.g., an AR content’s size
increases as its primary binding object gets bigger (Figure 6d).
In order to determine whether an AR content holds a specific

type of binding, we investigate the following three types of spatial
relationship attributes of the geometric features. Note that the
first two may happen for the point/line/plane bindings, while the
third one is only valid for the volume bindings.
• Dis represents the Euclidean distance between the corresponding
geometric feature and the AR content’s centroid.

• rRot represents the angle between an AR content’s primary axis
and the relative vector that represents (1) the vector pointing
from the AR content’s centroid to the target vertex for the point
binding, (2) the vector pointing from the AR content’s centroid
to the closest point on the target edge for the line binding, and
(3) the normal vector of the target face for the plane binding.

• rSize represents a subset of the vector
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where (Sx0, Sy0, Sz0) represents the scale of the AR content and
(Sx1, Sy1, Sz1) is the scale of the binding object.
During authoring, if a designer authors a spatial association of an

AR content (e.g., an AR decoration is always placed at the corner of
the TV), one or more spatial relationship attributes should keep un-
changed across all the provided demonstrations. Now, we describe
the fitting process to systematically interpret such invariance and
extract the necessary information of the binding.

For all the AR content placements with the same identity as-
sociation, more than one type of binding as well as more than
one physical object’s geometric feature may be feasible to repre-
sent the spatial relationship. For instance, the Dis of an AR vase
may be fixed with respect to all the vertices (point binding) of a

table and even some of the edges (line binding). Therefore, we de-
velop an algorithm to extract the geometric features that consist
of the most ‘unchanged’ spatial relationship attributes across all
the demonstrations, namely, the target binding features. In addi-
tion, it calculates the spatial attributes relative to the target binding
features that are used to place the AR content, namely, the target
binding values. The algorithm takes all theM geometric features
[f1, f2, .., fM ] as well as the corresponding spatial relationship at-
tributes in all the L virtual scenes as the inputs, where fm .Dis[l]
indicates the Dis attribute of them − th geometric feature in the
l − th scene. First, for each type of the spatial relationship attributes,
we set a cut-off rule to extract the geometric features that the AR
content may be bound. Typically, we extract the geometric fea-
ture fm if max(| fm .Attr[i] − fm .Attr[j]|) < thresholdAttr, where
Attr ∈ {Dis, rRot, rSize}, and i, j ∈ {1, 2, ...,L}, i , j (the CutOff-
GeometricFeatures function in Figure 7). Considering that the Dis
may also be affected by the scale of the binding object, we use both
the normalized and unnormalized thresholds to evaluate the results.
The thresholds are empirically set as thresholdDis = 10cm (unnor-
malized), 0.15× scale radius (normalized), where the scale radius is
half of the space diagonal of the bounding box, thresholdrRot = 20◦,
thresholdrSize = 20% per axis , following [42, 65]. Although these
works adopt the total difference (50% of the axis length) along the
three dimensions as the rSize threshold, we use an average thresh-
old (20%) for each individual axis to enforce a stricter restriction
on aspect ratio variation. Then, within each of the three sets of the
extracted geometric features, we compute the standard deviation
of the corresponding spatial relationship attributes across all the
demonstrations and select the geometric feature with the lowest
standard deviation as the target binding feature respectively. Finally,
we use the corresponding average value as the target binding values
(the CalculateTargetBinding function in Figure 7).

Note that each of the three subsets may be empty due to the
significant variations across the data and the lack of an apparent
pattern in the designer’s demonstrations, which prevents us from
determining the target binding features/values. In this case, we check
whether the reference binding objects exist. If so, the reference bind-
ing objects are utilized to constrain the DOF of the AR content with
respect to the primary binding objects and to confirm the target
binding features. Here, we demonstrate several examples when con-
sidering the reference binding objects: (1) an AR content keeps a
fixed distance from a primary binding object’s geometric features,
and faces along the vector pointing from the primary binding ob-
ject to the reference binding object (Figure 6e, f), (2) an AR content
fixed on a plane of the primary binding object tracks the motion
of a reference binding object (Figure 6g), and (3) The scale of the
AR content is affected by either the distance between the reference
binding object and the primary binding object (Figure 6h-1) or the
scale of the reference binding object (Figure 6h-2). When a spatial
relationship attribute gets an empty set after running the CutOff-
GeometricFeatures function, we adopt the same function using the
geometric features of the reference binding object [f1

′

, f2
′

, ..., fM
′

] as
the inputs. The values used for the reference binding object are in the
primary binding object’s local coordinate system. When more than
one reference binding object exists, we regard them as one object
and average all the spatial attributes for the calculation.
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Algorithm: Fit Target Binding

GetTargetBindingFeaturesAndValues ([𝑓1, 𝑓2, …, 𝑓𝑀], [𝑓1
′, 𝑓2

′, …, 𝑓𝑀
′], 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑫𝒊𝒔):

𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑛𝑢𝑙𝑙
𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 ← 𝑛𝑢𝑙𝑙

/∗ 𝐶ℎ𝑒𝑐𝑘 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡 ∗/
𝐹 ← CutOffGeometricFeatures ([𝑓1, 𝑓2, …, 𝑓𝑀], 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)
𝐢𝐟 𝐹. 𝐿𝑒𝑛𝑔𝑡ℎ ≠ 0 𝐭𝐡𝐞𝐧

𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 ← CalculateTargetBinding (𝐹, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)
else

/∗ 𝐶ℎ𝑒𝑐𝑘 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡 ∗/
if [𝑓1

′, 𝑓2
′, …, 𝑓𝑀

′] ≠ 𝑛𝑢𝑙𝑙 then
𝐹′ ← CutOffGeometricFeatures [𝑓1

′, 𝑓2
′, …, 𝑓𝑀

′], 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)
𝐢𝐟 𝐹′. Length ≠ 0 𝐭𝐡𝐞𝐧

𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 ← CalculateTargetBinding (𝐹′, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)
/∗ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∗/
𝐢𝐟 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 == null 𝐭𝐡𝐞𝐧

𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒, _ ← GetTargetBindingFeaturesAndValues ([𝑓1, 𝑓2, …, 𝑓𝑀], 𝒓𝑹𝒐𝒕)
𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 ← random value

return 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐹𝑒𝑎𝑡𝑢𝑟𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒

CutOffGeometricFeatures ([𝑓1, 𝑓2, …, 𝑓𝑀], 𝑨𝒕𝒕𝒓):
𝐹 ← 𝑎𝑟𝑟𝑎𝑦[]
for m ← 1, M do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐺𝑒𝑜𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑟𝑟 ← 𝑎𝑟𝑟𝑎𝑦[][]
for i, j ← 1, L do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐺𝑒𝑜𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑟𝑟 𝑖][𝑗 ← 𝑎𝑏𝑠(𝑓𝑚. 𝑨𝒕𝒕𝒓 𝑖 − 𝑓𝑚. 𝑨𝒕𝒕𝒓 𝑗 )
if  𝑚𝑎𝑥 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐺𝑒𝑜𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑟𝑟) < 𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙𝑑. 𝑨𝒕𝒕𝒓 𝐭𝐡𝐞𝐧

Add 𝑓𝑚 into 𝐹
return 𝐹

CalculateTargetBinding (𝐹, 𝑨𝒕𝒕𝒓):

𝜎𝑚𝑖𝑛 ← ∞; መ𝑓, ො𝜇 ← 𝑛𝑢𝑙𝑙
for 𝑓 in 𝐹 do

𝜇 =
1

𝐿
σ𝑙=1

𝐿 𝑓. 𝑨𝒕𝒕𝒓[𝑙]

σ =
1

𝐿
σ𝑙=1

𝐿 (𝜇 − 𝑓. 𝑨𝒕𝒕𝒓[𝑙])2

𝐢𝐟 σ < 𝜎𝑚𝑖𝑛 then

𝜎𝑚𝑖𝑛 ← σ; መ𝑓 ← 𝑓; ො𝜇 ← 𝜇

return መ𝑓, ො𝜇

Figure 7: The fitting algorithm that predicts the target bind-
ing feature and calculates the target binding value using the
geometric features of the identity association object as the
inputs. Here, we use the Dis attribute as an example. The
other two spatial relationship attributes, rRot and rSize, are
predicted using the same approach.

Suppose we still fail to get the target binding feature for a spatial
relationship attribute. We use the non-empty target binding feature
of other spatial relationship attributes as the target binding feature
and set the target binding value as a random value. Overall the
algorithm to fit the AR content placement model is illustrated as
the GetTargetBindingFeaturesAndValues function in Figure 7.

4.5 Deployment of the AR Experience
In this section, we describe how to apply the semantic adaptation
model during the deployment of the authored AR experience. Typi-
cally, given a physical scene, how ScalAR renders each AR content.

After ScalAR finishes fitting the semantic adaptation model, all
the model parameters including (1) the involving object labels
needed for each SVM-based identity association prediction model,
(2) the target binding features and target binding values for each
case of the activated identity association, and (3) the physical object
labels involved in the trigger-behavior bindings are uploaded to the
online server. When deploying an AR experience, a consumer first
conducts the scanning process described in Section 4.1, or clicks the
load scene button on the left-hand menu (Figure 4a-1) if the scene
has already been scanned. Then, the AR consumer deploy the AR
experience by clicking the load app button.

ScalAR follows the process of the loaded semantic adaptation
model shown in Figure 3c to determine the placement of each AR
content with respect to the current physical layout. Specifically,
ScalAR first checks whether the system has a semantic group that

contains exactly the same set of the physical objects as the current
layout. If so, the model adopts the corresponding SVM model to
predict the activated identity association. Otherwise, our system
searches a semantic group where the authored identity associations
include a subset of the physical objects present in the current scene
and adopts the corresponding SVM model. For example, ScalAR
tries to render an AR decoration in a scene with { TV, table, book-
shelf }, but no semantic group matches it. However, ScalAR has
a semantic group that involves { TV, table, sofa, floor lamp }. And
during the authoring of this AR content, the designer has activated
either TV or table as the identity association in different conditions.
Here, our system uses the SVM model trained from this semantic
group to predict identity association. On the contrary, if no such
semantic group can be found, the system assumes the AR content
is not suitable for the current scene and will not render it. This
is because for semantic-based AR experiences, the semantic-level
augmentation is primarily expressed by accurately placing a series
of AR contents next to the relative physical objects within a physi-
cal environment. For instance, the AR contents in an AR cooking
tutorial are tightly associated with the physical objects in a kitchen
environment such as ranges, refrigerators, and countertops. Thus,
these AR contents will not be reasonable to be rendered in a liv-
ing room with sofas, TVs, and bookshelves. After predicting the
activated identity associations in the current scene, ScalAR fetches
the target binding features and target binding values to render the
AR content. Note that since the target binding values are relative to
the target binding features, the absolute spatial attributes to even-
tually render the AR content will be calculated accordingly. For
instance, in one AR content placement model, an AR bird uses
the upper-left corner of the TV (from the primary binding object)
as the target binding object with a Dis value as the target binding
value. Meanwhile, it contains the centroid of the sofa (from the ref-
erence binding object) as another target binding object with a rRot
to constrain the rotation of the bird. In the deploying scene, given
the spatial attributes of the TV and sofa, our system renders the
AR bird to stand at the upper-left corner while facing towards the
centroid of the sofa. To avoid collision between the AR content and
the physical objects, we further adjust the content placement to
exclude the space occupied by the physical objects. Afterwards, the
trigger-behavior bindings are constructed if both the connected AR
contents have been placed.

4.6 System Hardware and Software Setup
Webuilt the AR-side system onHoloLens 2 [58], and the VR-side sys-
tem on Oculus Quest 2 [66]. We adopted the bare-hand interaction
supported by both devices as the user input modality. Both systems
were developed with Unity3D (2019.4.16f1) and the user interfaces
were supported by Microsoft Mixed Reality Toolkit (MRTK)3. The
AR-VR data transfer (the online server mentioned in the paper) was
enabled by Azure Storage service4. For the physical scene collec-
tion, the 2D object detection model was trained to detect 15 indoor
furnishings including dishwasher, microwave, refrigerator, sink,
ranges, countertops, cabinets, bed, blinds, wardrobe, sofa, TV, table,
bookshelf, and chair for study and research use. For each object,

3https://github.com/microsoft/MixedRealityToolkit-Unity
4https://docs.microsoft.com/en-us/azure/storage
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the researchers selected approximately 2000 images from ImageNet
[14] and Epic-kitchens [13]. The training took 1.2 hours on Azure
Custom Vision platform5 with a precision of 95.1%, recall of 95.1%,
and mAP of 90.6%. The IoU threshold was set to 0.5 for the 3D
bounding box generation. The scene collection runs at 30 frame per
second on a HoloLens 2, while the post-processing requires less
than 10 seconds. Regarding the scene synthesis, the GA approach
employed a population of 100 individuals, a mutation probability of
30, and a maximum number of 20 iterations, which takes 25 seconds
on average for each collected scene. The values for the initial popu-
lation were generated randomly and all the GA parameters were
determined empirically in order to fulfill the criterion. To ensure
a satisfactory fitting result of the identity association prediction
model, we empirically synthesized 90 virtual scenes for each se-
mantic group to train the SVM classifier, which was determined by
the dimension of spatial feature vectors fed into the SVM training in
our case [91]. The SVM classifier was trained and run on a local PC
(Intel Core i7-9700K 3.6GB, 32GB RAM, NVIDIA RTX2080 GPU).

5 APPLICATION SCENARIOS
With ScalAR, AR designers are allowed to create semantically adap-
tive AR contents that can be deployed in multiple physical environ-
ments. Here, we showcase two application scenarios that leverage
the flexibility of the VR authoring environment and the semantic-
level adaptation enabled by our system.

5.1 AR Interior Decoration Collection
The advents of mobile computing lower the barrier to spatially
and temporally distribute the workforce while keeping the produc-
tivity. ScalAR enables designers to create AR experiences in VR
without leaving their local places. This capability raises substantial
advantages of facilitating different designers to create scalable AR
experiences under the same semantic topic, which significantly
expedites the dissemination of their domain expertise. We address
this enhancement through an AR interior decoration collection
experience. Three interior designers with different design styles
create a living room decoration AR application (Figure 8). With
ScalAR, each designer is immersed in numerous living room envi-
ronments with key elements such as sofa, TV, and window. They
place the pre-designed virtual assets according to the scale, loca-
tion, and overall layout of the environments. Then, AR consumers
who locate in different places can experience the three designs to
decorate their living rooms.

5.2 Interactive AR Pet
The role played by AR consumers in the AR experiences is essential,
especially in AR games6, and interactive AR experiences [48, 49].
ScalAR embraces the trigger-behaviormetaphor to achieve dynamic
reactions of the AR contents with respect to the semantic-sensitive
human behaviors. Here, we showcase an interactive AR pet appli-
cation authored with ScalAR (Figure 9). A designer places three
consumer assets in the virtual living room environment and binds
them to the physical objects respectively. Through trigger-behavior

5https://azure.microsoft.com/en-us/services/cognitive-services/custom-vision-
service
6https://www.asobostudio.com

Modern Style Designer VR

Natural Style Designer VR

Classic Style Designer VR

(a-1) (b-1) (c-1)

(a-3)

(a-4)

(b-3)

(b-4)

(c-3)

(c-4)

(a-2) (b-2) (c-2)

Figure 8: AR Interior Decoration Collection. (a-1) The mod-
ern style design authoring: a fireplace on the floor beneath
the TV, a decoration on the table in front of the sofa, a dec-
oration hung on the wall behind the sofa, and a curtain cov-
ering the window. (a-2 to a-4) The deployments in three liv-
ing rooms. (b-1) The natural style design authoring: a bird
decoration attached at the corner of the TV, a tall plant is
placed on the floor beneath the window, a plant decoration
is placed on the table in front of the sofa, a deer statue on the
floor next to the sofa, and a bird decoration hung on thewall
behind the sofa. (b-2 to b-4) The deployments in three living
rooms. (c-1) The classic style design authoring: a painting
hung on the wall behind the TV, another painting hung on
thewall behind the sofa, a classic statue on the floor beneath
the TV, a pair of candlesticks on the table in front of the sofa,
and a classic curtain covering thewindow. (c-2 to c-4) The de-
ployments in three living rooms.

connections, the designer defines three semantic animations of a
pre-designed AR pet dog (sit, walk-towards, and jump-to) where
the last two require the designer to bind the target position AR
content in the environment using the same method as other AR
contents adopt. Then, in different AR environments, AR consumers
can enjoy the AR pet with interactive responses where not only
the AR content behaviors are semantically represented, but the AR
consumers can intuitively trigger the corresponding behaviors (e.g.,
the dog will walk to the consumer and jump onto the table as the
consumer sits on the sofa).

6 USER STUDY
Participants. Our system consists of two major platforms. The
AR-side application supports local AR consumers to collect the
physical scenes and use the AR experiences, while the VR-side
studio focuses on the authoring of the AR content behaviors. Thus,
we invited two groups of users respectively, the AR users (AUs) and
VR users (VUs), to evaluate our system. For the AR-side, our system
targets any novice user who wants to consume the AR experiences.
We recruited 16 users (11 males, 5 females, aging from 19 to 39). 14
out of 16 had used AR/VR applications (e.g., phone-based AR/VR
games) while the rest two had heard about AR/VR. None of them
had used our system before the user study. For the VR-side system,
by introducing the immersive authoring and spatial programming
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(a)

(b-1)

(b-2)

(b-3)

Figure 9: Interactive AR Pet. (a) The authoring details: the
dog initially lies on the floor beneath the TV, (1) when the
AR consumer stands in front of the window which is next
to the TV, the dog sits up, (2) when the AR consumer stands
in front of the sofa, the dog walks to the front of the table
in front of the sofa, (3) when the AR consumer sits on the
sofa, the dog jumps onto the table, while if no table exists,
the dog jumps on the sofa next to the AR consumer. (b-1 to
b-3) The deployments in three living rooms.

metaphors, ScalAR does not limit the target users to professional
designers or programmers. Although the main purpose of the user
study was not to compare the user experience between experts and
novices, we invited both designers and novice users as the VUs
to get more diverse feedback. 12 users (8 males, 4 females, aging
from 23 to 31) were recruited as the VUs. Four of them had AR/VR
development experience (e.g., Unity3D, ARCore, and Vuforia) for
more than 12 months and self-identified as AR/VR designers, two
had taken VR development courses using Unity3D and Oculus, and
the rest six had experienced AR/VR games/applications such as
VRChat and Pokemon Go. None of them had used our system.

Table 1: User Study Arrangement. Considering the logis-
tics of the tasks, the Session 2 was divided into three sub-
sessions.We first conducted the scene collection sub-session
with theAUs to create sample scenes used for the VR author-
ing sub-session. Then, the VUs completed the model evalua-
tion session, and authored the AR experiences. Finally, the
AUs consumed the authored experiences.

Procedure. We conducted a two-session user study to evaluate
(1) the performance of the semantic adaptation model and (2) the
overall usability of ScalAR. The arrangement of the entire user study
is shown in Table 1. Since the second session focused on the end-
to-end experience evaluation, it was split into three sub-sessions
representing the three major parts of the ScalAR workflow.

The two AR-side sub-sessions, scene collection and AR deploy-
ment, were completed in two visits and took an hour in total. Each
AU was paid with a $10 e-gift card. One of our researchers brought
the AR device (HoloLens 2) to each AU’s home and guided the
AUs to complete the tasks respectively. For the scene collection,
we first asked the AUs to complete a HoloLens built-in tutorial to
get familiar with the freehand interactions. Then, the AUs used

ScalAR to collect their physical scenes. We screen-recorded the
AUs’ operations and recorded the necessary data as described in
the following section. The AR deployment sub-session happened
after the VR-side user study. We asked each AU to deploy and
use the AR experiences authored by the VUs and recorded the
first-person view of the entire usage process. The two consecutive
VR-side sub-sessions lasted for 2 hours, and each VU was paid with
a $20 e-gift card. After a VU came, we first guided the VU to get
familiar with the bare-hand drag-and-drop and click operations
enabled by Oculus Quest 2. Then, the VU completed the tasks in
VR and the first-person view was screen-recorded. After the AUs
used the AR experience, we sent the AR-side usage videos together
with the video of the VU’s authoring process back to the VU to ask
for the feedback in terms of the deployment performance. After
each sub-session, both the AUs and VUs completed a Likert-type
survey (scaled 1-5) regarding the user experience of the system
features and the overall deployment performance. At the end of
both sides of the user study, we conducted a conversation-type
interview to collect the subjective feedback and asked the users to
filled a standard System Usability Scale (SUS) questionnaire.

6.1 Session 1: Semantic Adaptation Model
Accuracy Evaluation

6.1.1 Task Description. This study session aimed to assess the per-
formance of the fitting algorithm and the feasibility of the semantic
adaptation model with an AR decoration experience for bedroom
environments. Only the VR studio of ScalAR was used by the VUs
to generate data for the quantitative analysis. The scene collection
was done by one of our researchers who collected a bedroom en-
vironment with nine physical objects: a bed, a window, a door, a
wardrobe, a floor, and 4 walls, and ScalAR synthesized 120 virtual
scenes, where 90 were included in the authoring system and 30 were
used for the test. To comprehensively reflect the considerations of
the semantically adaptive AR experience authoring, we designed
six AR content placement tasks: (1) a cat sleeps at the corner of the
bed mattress, (2) a curtain covers the entire window, (3) a painting
is hung on the wall behind the bed, (4) a plant is placed on the
floor below the window, (5) a mirror is hung next to the window
when the window is facing towards the wardrobe, otherwise, on
the wardrobe, and (6) a toy dog is placed on the bed when the bed is
near the window, otherwise, on the window (Figure 10a). The first
two tasks only required single primary binding objects, the next
two required single primary binding objects and reference binding
objects. The last two tasks required the VUs to activate different
primary binding objects under different layouts. Specifically, the
performance of the SVM model fitting was evaluated using the last
two tasks, while the overall fitting accuracy was evaluated using all
the six tasks. In order to get controllable quantitative data, one re-
searcher explicitly described each task to the VUs during the study.
For the tasks that may involve ambiguities such as the ‘corner of the
bed’, the researcher further clarified them to ensure all the VUs had
the same goals. The VUs authored and adjusted the AR contents
based on their understanding of every virtual scene. After the VUs
finished authoring, we fit the semantic adaptation models and used
the test scenes to evaluate the spatial accuracy of the AR content
rendering. Note that the virtual scenes were synthesized from one
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physical scene without quantity variation. Thus, for each VU, one
single semantic adaptation model was fit per task.
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Figure 10: User Study Session 1. (a-1 to a-6) The six AR con-
tent placement tasks. (b) The results of theAR content place-
ment accuracy.

In terms of the evaluation criteria, following commonly adopted
processes for object manipulation in the virtual domain [7, 57], the
researcher who described the tasks to the VUs manually placed the
AR contents in all the 30 test scenes to provide the ground truths.
We calculated the errors following the procedures in [57] for all
the six tasks. For the last two tasks, we calculated the accuracy of
the trained SVM models. In the previous works [20, 42, 84], the
object manipulation is considered as successful if the errors are
below certain thresholds. Here, we used the proposed thresholds:
thresholdpos = 0.15 , thresholdrot = 18◦, thresholdscale = 0.5.
Both the position error and scale error were normalized with half
of the ground-truth object’s diagonal as the unit.

6.1.2 Result and Discussion. All the 12 VUs successfully completed
the six tasks. For each task, within the 90 virtual scenes provided,
the VUs manually adjusted 8.63 scenes on average (SD=2.18) using
11.79 minutes (SD=2.91). The quantitative evaluation results are
illustrated in Figure 10b. Specifically, the average position error
was 0.072 (SD = 0.027) and the average rotation error was 12.61◦
(SD = 5.98◦) across all the six tasks. Both the results were below
the thresholds respectively, which indicated that the semantic adap-
tation model could accurately predict the AR content placement.
For the position error, task 4 (AVG = 0.114, SD = 0.017) had worse
performance than others due to the difficulty to accurately refer
to the projection of window centroid on the floor. The high error
value of task 5 (AVG = 0.093, SD = 0.009) might attribute to the
different spaces that different VUs left between the mirror and
window when the window was facing the wardrobe. The rotation
errors in task 1 (AVG = 19.83◦, SD = 8.03◦), task 4 (AVG = 18.45◦,
SD = 6.23◦), and task 6 (AVG = 15.10◦, SD = 7.31◦) increased
because the VUs were free to rotate the AR content and not all the
AR contents’ axes were expected to have stable rRots relative to
the corresponding objects. The scale errors were normalized with

respect to the ground truths and obtained as the sum of the three
axes [42]. And all the scale errors were lower than the threshold.
For task 2 (AVG = 0.06, SD = 0.04) and task 5 (AVG = 0.094,
SD = 0.06), in which AR content sizes were highly aligned with the
physical object size, our model could accurately estimate the scale
change. Although the VUs could also coarsely adjust the AR content
scale as the physical object scale changed in other tasks such as
task 4 (AVG = 0.14, SD = 0.05), they found it hard to scale the AR
content without precise measurement of the physical objects. The
average scale error was 0.108 (SD = 0.03), showing that our model
could reliably estimate the scale change trend. Meanwhile, the over-
all accuracy of the SVM classification result was 96.5%, where the
accuracy results were 97.2% and 95.8% for task 5 and task 6 respec-
tively, which proved the feasibility of the SVM training process.
Overall, the semantic adaptation models could precisely predict the
activated identity associations and the AR contents’ relative spatial
attributes in different deploying scenes.

6.2 Session 2: System Usability Evaluation
6.2.1 Task Description. In this session, we evaluated the end-to-
end user experience of the three major sections of the ScalAR
workflow using an AR cooking tutorial application for kitchen en-
vironments. First, for the scene collection, we concentrated on
whether an end-user could accurately and easily scan a physical
scene using the AR-side system of ScalAR. The AUs were asked
to scan their kitchens using our system (Figure 11a-1). And our
system recorded the identities and spatial attributes of the origi-
nally inferred physical objects. Then, the AUs were encouraged
to adjust the 3D bounding boxes and add the missing objects. Af-
ter the AUs were satisfied with the results, we recorded the same
information of the layouts, where the post-adjustment data were
used as the ground truths to evaluate the performance of the scene
collection algorithm of ScalAR. Next, we randomly selected 10 col-
lected scenes to synthesize the virtual scenes for the VR authoring
sub-session. Typically, ScalAR generated 270 virtual scenes with
three semantic groups based on the collected scenes. Then in VR,
the VUs were asked to author the cooking tutorial with five AR
contents: a slider-like UI, a video display, a plate with fish, a menu,
and a consumer asset. For the semantic bindings (Figure 11a-2), (1)
the slider-UI was attached to the microwave oven when the range
was below the microwave oven, otherwise above the range, (2) the
video display was attached to the countertop near the range, (3) the
starting and finishing points of the plate animation were attached
to the refrigerator and the sink, (4) the menu was attached to the
refrigerator. In order to control the cooking tutorial, the VUs were
asked to create trigger-behavior connections from the slider-UI to
(1) the animation behavior of the plate and (2) the play-video behav-
ior of the video display (marinate fish). The position trigger of the
consumer asset was connected to the second play-video behavior of
the display (fry fish). After the authoring, the semantic adaptation
models fit from the VUs’ demonstrations were sent to the AR-side
system. And the AUs deployed and used the AR experiences in a
random order (Figure 11a-3).

6.2.2 Physical Scene Collection Accuracy Result. All the 16 AUs
successfully scanned their kitchen environments using ScalAR. Two
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Figure 11: User Study Session 2. (a-1) The scene collection
sub-session where the AUs can manually adjust the gener-
ated bounding boxes. (a-2) The VR authoring of the cooking
tutorial task. (a-3) The AUs consume the authored AR expe-
rience. (b) The Likert-type questionnaire results for both the
AUs and VUs.

AUs manually added one cabinet that was not detected by our sys-
tem because the cabinet was hung above the refrigerator with a
relative small size while the AUs did not notice it during scanning.
Regarding the quantitative accuracy, we followed the criteria com-
monly used in the 3D object detection area [64, 79], and adopted the
AU-adjusted layouts as the ground truths. Typically, we calculated
the mean translation error (i.e., the error of the standard Euclidean
distance) to be 0.046m (SD=0.13), the mean rotation error (i.e., the
error of the geodesic distance) to be 1.87◦ (SD=1.04), and the mean
scale error (i.e., the error of the logarithmic scaling factor) to be 0.09
(SD=0.14). Compared with the results using the general dataset in
the above works, we achieved satisfactory results mainly because
our system guided the AUs to observe the objects of interests with
a closer distance and for a longer time to collect enough images
with higher quality. Overall, the results indicated that the scene
collection algorithm of ScalAR enabled the accurate scanning of the
identity and spatial information of the physical environments for
future VR authoring and AR deployment. The subjective feedback
described later also supports the performance of the algorithm.

6.2.3 End-to-End User Experience Result. The Likert-type ques-
tionnaire results of both the AUs and VUs are shown in Figure
11b. Regarding the scene collection process, majority of the AUs
were satisfied with the ease of the scanning process (Q1, AVG=4.81,

SD=0.40) and the accuracy of the detected physical objects (Q2,
AVG=4.31, SD=1.01). “I just followed the instructions next to the
menu to scan my room. No difficulties at all. (AU7)” “The detection
was really accurate, it even separated the cabinets that were connected.
(AU13)” The two ‘slightly disagree’ votes were due to the missing
detection of the cabinet mentioned in the previous section. Yet,
the AUs were confident that ScalAR could detect those objects if
they paid more attention to those cabinets and also welcomed the
‘manually add object’ function.

For the VR authoring experience, all the 12 VUs successfully com-
pleted the authoring using 31.75 minutes on average (SD=6.32). The
VUs stopped at 15.83 virtual scenes (SD=2.59) to manually define
and adjust the semantic bindings. The virtual scenes created by our
system received complimentary feedback (Q6, AVG=4.50, SD=0.80).
“All of these virtual kitchens are very reasonable. Some kitchens don’t
have a microwave, some have a very large countertop, and some even
don’t have one. (VU5)” Given the realistic and reasonable virtual en-
vironments, the VUs acknowledged the immersive feeling provided
by our system (Q5, AVG=4.25, SD=0.97; Q7, AVG=4.58, SD=0.67). “I
clearly knew where to place those AR contents in the virtual kitchen,
actually I could imagine walking inside a real kitchen. (VU11)” Yet,
one VU questioned that using the same CAD model for a physical
object in every scene might reduce the feeling of the scene variation.
This can be addressed by adding more available CAD models for
each object and randomly picking one for each virtual scene. And
we also discuss the detail-level diversity of each object in the next
section. The majority of the VUs appreciated the additional virtual
scenes for validating their designs (Q11: AVG=4.67, SD=0.65). “I
didn’t realize that not all kitchens have a microwave until I saw that
warning sign. (VU1)” “I adjusted the position and the size of the video
display when I saw a very large countertop. It would be bad if a tiny
video display was placed on a large table. (VU4)” And our system
essentially gave the VUs confidence in the accurate execution of the
cooking tutorial (Q13: AVG=4.25, SD=0.79). We further asked about
the detailed features to facilitate the authoring. Overall, the system
covered most of the needs to author a semantically adaptive AR
experience (Q9, AVG=4.25, SD=0.75). “I think all the conditions have
been considered in your system. I really like the idea of representing
the user with a virtual model, and define this model’s behaviors in
different environments. (VU12)” The design of the primary/reference
binding object was welcomed by the VUs (Q8, AVG=4.33, SD=0.98).
“I really like the idea of reference binding. It’s very common to hang a
painting on the wall while using TV as reference for example. (VU11)”
But another VU with not much designing experience raised that
“If I use this system to design the AR app, the primary binding object
may be enough because it is really easy to understand, but the ref-
erence is slightly complicated. (VU6)” Following this comment, we
need to consider different target user groups and provide additional
assistance to non-expert users, which will be discussed in the next
section. Supported by pre-assigning the semantic bindings to other
scenes, about 6% of the provided scenes were manually adjusted
by the VUs. And they felt relived that they did not have to adjust
every virtual scene (Q10: AVG=4.67, SD=0.49). “That the AR contents
could follow the attached objects really reduce a lot of work. So, I could
fully focus on those scenes with critical differences. (VU3)” The Test
Mode was receptively (Q12, AVG=4.75, SD=0.45). “It’s necessary to
immediately try out my design. I could even try if the video display
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was too far from me when I put it next to the range. (VU3)” The VUs
complimented the UI and intuitive operation enabled by immersive
authoring (Q15, AVG=4.33, SD=0.65). “Using lines to represent the
binding relationship is really easy to understand. I think it aligns with
a correct logic. (VU3)”

The final deployment results received positive feedback from
both groups of the users. After watching the deployment videos,
most VUs acknowledged the success of the adaptive behaviors in
different kitchens (Q14, AVG=4.58, SD=0.51). “I feel more confident
of using your system after seeing that my design works in so many
rooms. (VU1)” The AUs also enjoyed the semantic-level associations
of the AR contents with the surroundings (Q3: AVG=4.25, SD=0.77;
Q4: AVG=4.38, SD=0.72). “I liked the animations in the tutorial most.
Really easy to understand where to do what. (AU2)” “I really like that
big video display on my countertop. It’s convenient to watch tutorials
when preparing and cooking foods. (AU9)” The SUS survey results
were 94 out of 100 (SD=3.46) for the AR-side and 87 out of 100
(SD=8.88) for the VR-side, which further illustrated the satisfactory
usability of the entire workflow our system.

7 LIMITATIONS AND FUTUREWORKS
Object-level adaptation.Our systemmainly addresses the adapta-
tion capability regarding the variations of the indoor layouts. While
using the 3D bounding boxes as the spatial references to place AR
contents has been proved effective during the user study, some VUs
raised that the adaptation performance may be unsatisfactory ow-
ing to the complicated and diversified geometrical configurations of
the physical objects (e.g., different types of sofas with different sizes
and locations of the armrest). Integrating object-level semantic un-
derstanding techniques [54, 77] could be a solution. By semantically
segmenting the dense mesh of the physical objects, some functional
planes can be extracted as the additional spatial references (e.g., sit-
table and leanable planes of a chair). We could allow the designers
to select these features as the identity association resources in VR,
and incorporate them with the current semantic adaptation model
to further improve the system performance.

Feedback from the deployment results. As addressed in Sec-
tion 4.5, if a new physical scene does not have the required objects
for the classification process, we skip rendering the corresponding
AR content because the essential reference environment affordance
may not exist. VU10 raised that by adding a feedback from AR
to VR, we could inform the designer of the failure cases by show-
ing these scenes in the VR authoring environment. This way, the
designer can manually re-define the semantic bindings and keep
the design updated even when new physical scenes are collected
and uploaded to the authoring environment. Leveraging the online
server we currently adopt, granting the AR-side system with such
capabilities could be one improvement direction.

Dynamic suggestions during authoring. ScalAR fits the se-
mantic adaptation model after a designer validates the design in
all the virtual scenes, and the user study has proved the accuracy
of the fitting results. Yet, VU6 and VU2 suggested after adjusting
the AR contents in several scenes, the system could provide some
suggestions in terms of the potential spatial associations for the
designer to explicitly inform our system. In addition, while the
feature of pre-assigning the initial semantic binding to the other

virtual scenes received complimentary feedback, VU6 mentioned
that those associations were constantly set and sometimes may
confuse designers. Adding an adaptive statistical classification step
such as AdaBoost [21] and imitation learning [37] to the author-
ing process would be a possible direction to address these needs.
By dynamically inferring the designer’s adjustments, the system
can provide visual hints such as highlighted points/lines/planes
on the object to guide the designer to constrain the expected spa-
tial associations of the AR contents and can adaptively adjust the
pre-assigned semantic bindings to further reduce the workload.

Different levels of immersion in VR. We received compli-
mentary feedback regarding the immersiveness of the authoring
experience during the user study. Some VUs raised that “Because I
was standing at the center of the room, it was difficult for me to see
all the virtual contents when I slid the cursor. (VU3)” This concern
has also been addressed in prior immersive authoring works [89].
Leveraging the versatility of VR, we could elevate the designer’s
head position during the Traverse Mode to provide a larger field of
view. Meanwhile, different view modes other than the scene cursor
approach may be introduced in ScalAR. For instance, (1) allowing
designers to move the virtual scene instead of walking in the envi-
ronment during authoring and (2) arranging all the virtual scenes
in a matrix pattern, and provide the designers with a bird’s eye
view for more rapid validation of the design. In this manner, ScalAR
balances the immersiveness and the abstraction by leveraging the
limitless mobility enabled by VR.

More adaptation resources for expert designers. The pro-
vided system features were proved to cover most needs to author
semantically adaptive AR content behaviors as addressed in the
user study. Some VUs who identified as AR/VR developers recom-
mended providing more capabilities to expert users following the
current system design. For instance, we consider AR consumers’
semantic-sensitive spatial movements such as ‘sitting on the sofa’
as the resources because the authoring logic is highly similar to
the semantic bindings to the physical objects. VU10 mentioned
ScalAR should provide more input modalities such as ‘look at the
TV’ and ‘open the refrigerator’ as the resources since they also
involve semantic implications with the surroundings. VU1 further
suggested utilizing AR consumers’ interactions with the physical
entities to trigger AR content behaviors as addressed in [63, 88].
Therefore, our research opens up future directions to expand the
semantic-level blends between the AR and physical domains while
maintaining the adaptation capability in different environments
through human authoring.

8 CONCLUSION
In this work, we presented ScalAR, an AR/VR integrated authoring
system empowering designers to build AR experiences that could
semantically adapt to different deploying environments.We first dis-
cussed the characteristics of semantically adaptive AR experiences
to characterize the two-level associations between the AR contents
and the physical environments, namely identity association and
spatial association, as well as the two-level scene variations, spatial
variation and quantity variation. Then, we proposed an authoring
workflow with three consecutive sections: (1) In AR, potential con-
sumers collect the target scenes relevant to the authoring topic. (2)
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In VR, a designer defines and validates the two-level associations
of the AR contents across plentiful virtual scenes through immer-
sive authoring. We distill a semantic adaptation model through a
decision-tree-based fitting algorithm using the designer’s demon-
strations. (3) Back in AR, the model maps the target physical scene
to the corresponding semantic-level relationships of the AR con-
tents. We further demonstrated two application scenarios, namely
an AR interior decoration collection and an interactive AR pet, that
exploited the capability of our system. With the user study, we first
evaluated the performance of the fitting algorithm by investigating
the quantitative behaviors of the semantic adaptation model fit from
the users’ demonstrations and elaborated the overall usability of
our system through the complimentary qualitative user feedback.
To sum up, we believe that ScalAR exposes a promising perspec-
tive of leveraging the immersiveness and flexibility of VR to create
semantic-sensitive AR experiences that can be extensively deployed
in diverse physical environments.
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